在Sci-kit中,学习了一些带有训练和测试数据的模型。
模型工作正常,但当我尝试计算任何准确度指标时,它会失败。我假设我的预测对象(pred y)或预期对象(true y)有问题。
对于这个测试,我看过了预测。它是一个对象,有119 0/1的值。
真y也是一个对象,有119 0/1的值。
我的代码和错误如下,以及对象比较。这是我不明白的错误。
"预期"是我的真实和" target_predicted"是预测的y。
我尝试了其他指标和其他模型 - 当我处于这个阶段时,它总是失败。
有任何帮助吗?
#Basic Decsion Tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(bank_train, bank_train_target)
print clf
DecisionTreeClassifier(compute_importances=None, criterion='gini',
max_depth=None, max_features=None, max_leaf_nodes=None,
min_density=None, min_samples_leaf=1, min_samples_split=2,
random_state=None, splitter='best')
#test model using test data
target_predicted = clf.predict(bank_test)
accuracy_score(expected,target_predicted)
#error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-31-23d1a990a192> in <module>()
1 #test model using test data
2 target_predicted = clf.predict(bank_test)
----> 3 accuracy_score(expected,target_predicted)
/Users/mpgartland1/anaconda/lib/python2.7/site-packages/sklearn/metrics/metrics.pyc in accuracy_score(y_true, y_pred, normalize, sample_weight)
1295
1296 # Compute accuracy for each possible representation
-> 1297 y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)
1298 if y_type == 'multilabel-indicator':
1299 score = (y_pred != y_true).sum(axis=1) == 0
/Users/mpgartland1/anaconda/lib/python2.7/site-packages/sklearn/metrics/metrics.pyc in _check_clf_targets(y_true, y_pred)
125 if (y_type not in ["binary", "multiclass", "multilabel-indicator",
126 "multilabel-sequences"]):
--> 127 raise ValueError("{0} is not supported".format(y_type))
128
129 if y_type in ["binary", "multiclass"]:
ValueError: unknown is not supported
这是两个对象的比较。
print target_predicted.size
print expected.size
print target_predicted.dtype
print expected.dtype
print target_predicted
print expected
119
119
object
object
[1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1
0 1 0 1 0 0 0 1]
[1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0
0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1
0 1 0 0 0 1 0 1]
如果我尝试混淆矩阵或其他指标时也会失败 - 使用非常曲奇的代码。所以,我猜是在对象中。
谢谢