堆排序的比较数

时间:2014-10-21 16:02:31

标签: c algorithm heapsort

我写了一些C代码来分析构建堆和运行heapsort的比较和运行时的数量。但是,我不确定我的代码输出是否有意义。 Heapsort应该在O(n log n)执行,但我看到的比较数似乎并不是非常接近。例如,对于大小为n = 100的输入,我看到~200比较构建堆和堆排序中的~800比较。我只是分析数据错误,或者我在代码中收集比较的方式有问题吗?

我可以提供github的链接,如果它会对任何人产生影响。

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

void bottom_up_heap_sort(int*, int);
void heap_sort(int*, int);
void sift_up(int*, int);
void sift_down(int*, int);
void build_max_heap(int*, int); 
void bottom_up_build_max_heap(int*, int);
void randomize_in_place(int*, int);
int* generate_array(int);
void swap(int*, int*);
int cmp(int, int);
void print_array(int*, int);

int heapsize;
unsigned long comparison_counter;
clock_t begin, end;
double time_spent;

int main() {
    int k, N;
    int* A;
    int* B;
    int i;

    printf("Testing Sift_Down Heap Sort\n");
    for(k = 2; k <= 5; k++) {
        comparison_counter = 0;
        N = (int)pow((double)10, k);

        begin = clock();
        A = generate_array(N);
        end = clock();
        time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
        printf("Time Spent Generating Array: %f\n", time_spent);

        // print the first unsorted array
        //printf("Unsorted Array:\n");
        //print_array(A, N);

        begin = clock();
        // call heap_sort on the first unsorted array
        heap_sort(A, N);
        end = clock();
        time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

        // show that the array is now sorted
        //printf("Sorted array: \n");
        //print_array(A, N);
        printf("Done with k = %d\n", k);
        printf("Comparisons for Heap Sort: %lu\n", comparison_counter);
        printf("Time Spent on Heap Sort: %f\n", time_spent);
        printf("\n");
    }

    printf("----------------------------------\n");
    printf("Testing Sift_Up Heap Sort\n");
        for(k = 2; k <= 5; k++) {
        comparison_counter = 0;
                N = (int)pow((double)10, k);

        begin = clock();
                B = generate_array(N);
        end = clock();
        time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
        printf("Time Spent Generating Array: %f\n", time_spent);

                // print the unsorted array
                //printf("Unsorted Array:\n");
                //print_array(B, N);

        begin = clock();
                // call heap_sort on the unsorted array
                bottom_up_heap_sort(B, N);
        end = clock();
        time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

                // show that the array is now sorted
                //printf("Sorted array: \n");
                //print_array(B, N);
                printf("Done with k = %d\n", k);
        printf("Comparisons for Heap Sort: %lu\n", comparison_counter);
        printf("Time Spent on Heap Sort: %f\n", time_spent);
        printf("\n");
        }

    printf("----------------------------------\n");

    return 0;
}

void bottom_up_heap_sort(int* arr, int len) {
    int i;

    // build a max heap from the bottom up using sift up
    bottom_up_build_max_heap(arr, len);
    printf("Comparisons for heap construction: %lu\n", comparison_counter);
    comparison_counter = 0; 
    for(i = len-1; i >= 0; i--) {
        // swap the last leaf and the root
        swap(&arr[i], &arr[0]);
        // remove the already sorted values
        len--;
        // repair the heap
        bottom_up_build_max_heap(arr, len);
    }
}

void heap_sort(int* arr, int len) {
    int i;

    // build a max heap from the array
    build_max_heap(arr, len);
    printf("Comparisons for heap construction: %lu\n", comparison_counter);
    comparison_counter = 0;
    for(i = len-1; i >= 1; i--) {
        swap(&arr[0], &arr[i]); // move arr[0] to its sorted place
        // remove the already sorted values
        heapsize--;
        sift_down(arr, 0);  // repair the heap
    }
}

void sift_down(int* arr, int i) {
    int c = 2*i+1;
    int largest;

    if(c >= heapsize) return;

    // locate largest child of i
    if((c+1 < heapsize) && cmp(arr[c+1], arr[c]) > 0) {
        c++;
    }

    // if child is larger than i, swap them
    if(cmp(arr[c], arr[i]) > 0) {
        swap(&arr[c], &arr[i]);
        sift_down(arr, c);
    }
}

void sift_up(int* arr, int i) {
    if(i == 0) return; // at the root

    // if the current node is larger than its parent, swap them
    if(cmp(arr[i], arr[(i-1)/2]) > 0) {
        swap(&arr[i], &arr[(i-1)/2]);
        // sift up to repair the heap
        sift_up(arr, (i-1)/2);
    }
}

void bottom_up_build_max_heap(int* arr, int len) {
    int i;
    for(i = 0; i < len; i++) {
        sift_up(arr, i);
    }
}

void build_max_heap(int* arr, int len) {
    heapsize = len;
    int i;
    for(i = len/2; i >= 0; i--) {
        // invariant: arr[k], i < k <= n are roots of proper heaps
        sift_down(arr, i);
    }
}

void randomize_in_place(int* arr, int n) {
    int j, k;
    double val;
    time_t t;
    // init the random number generator
    srand((unsigned)time(&t));

    // randomization code from class notes
    for(j = 0; j < n-1; j++) {
        val = ((double)random()) / 0x7FFFFFFF;
        k = j + val*(n-j);
        swap(&arr[k], &arr[j]);
    }
}

// this function is responsible for creating and populating an array 
// of size k, and randomizing the locations of its elements
int* generate_array(int k) {
    int* arr = (int*) malloc(sizeof(int)*k-1);
    int i, j, x, N;
    double val;
    time_t t;
    // init the random number generator
    srand((unsigned)time(&t));

    // fill the array with values from 1..N
    for(i = 0; i <= k-1; i++) {
        arr[i] = i+1;
    }

    N = (int)pow((double)10, 5);
    // randomize the elements of the array for 10^5 iterations
    for(i = 0; i < N; i++) {
        randomize_in_place(arr, k);
    }

    return arr;
}

// swap two elements
void swap(int* a, int* b) {
    int temp = *a;
    *a = *b;
    *b = temp;
}

int cmp(int a, int b) {
    comparison_counter++;

    if(a > b) return 1;
    else if(a < b) return -1;
    else return 0;
}

// print out an array by iterating through
void print_array(int* arr, int size) {
    int i;
    for(i = 0; i < size; i++) {
        printf("%d ", arr[i]);
    }
}

2 个答案:

答案 0 :(得分:1)

这种小n值的实际数字并不重要,因为复杂性中省略了常数因子。重要的是算法的增长,测量越来越大的n值,并绘制它们应该给出与理论复杂度大致相同的图形。

我尝试了几个n的代码,复杂性的增加大约为O(n logn)

答案 1 :(得分:1)

O(n log n)(或一般O(f(x)))并不能让您了解单点的预期价值。

这是因为大O符号忽略了常数因素。换句话说,n * log(n)0.000001 * n * log(n)1000000 * n * log(n)都位于O(n log n)。因此,n的特定值的结果完全未确定。

你可以从big-O表示法中推断出修改控制变量的效果。如果函数涉及O(n)个操作,那么预计加倍n会使操作数增加一倍。如果函数涉及O(n2)个操作,那么预计加倍n将使操作数量翻两番。等等。