未解析的外部符号(涉及具有用户定义类的模板)

时间:2014-10-19 03:25:14

标签: c++ templates compiler-errors

我正在使用Visiual Studio 2013.出于某种原因,我收到以下错误:

Error   1   error LNK2019: unresolved external symbol "class std::basic_ostream<char,struct std::char_traits<char> > & __cdecl operator<<(class std::basic_ostream<char,struct std::char_traits<char> > &,class Word &)" (??6@YAAAV?$basic_ostream@DU?$char_traits@D@std@@@std@@AAV01@AAVWord@@@Z) referenced in function "protected: virtual void __thiscall BST<class Word>::visit(class BSTNode<class Word> *)" (?visit@?$BST@VWord@@@@MAEXPAV?$BSTNode@VWord@@@@@Z) C:\Users\Reuben\documents\visual studio 2013\Projects\CS321 Lab4\CS321 Lab4\main.obj    CS321 Lab4

错误是由于这一特定行:

BST<Word> tree;

如果该行如下,那么它似乎编译得很好:

BST<int> tree;BST<string> tree;

所以出于某种原因,它不喜欢我定义的Word类的实现。以下是代码。

的main.cpp

#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include "Word.h"
#include "genBST.h"

using namespace std;

int main()
{
    BST<Word> tree;

    system("pause");

    return 0;
}

Word.h

#include <string>
#include <set>

using namespace std;

class Word{
public:
    string* word;
    set<int>* lineNums;
    void addLineNum(int);
    Word(string*, int);
    Word();
    friend ostream& operator<<(ostream& out, Word& pr);
    friend bool operator==(Word, Word);
    friend bool operator!=(Word, Word);
    friend bool operator<(Word, Word);
    friend bool operator<=(Word, Word);
    friend bool operator>=(Word, Word);
    friend bool operator>(Word, Word);
};

Word::Word(string* myWord, int myLineNum) {
    word = myWord;
    set<int>* lineNums = new set<int>();
    lineNums->insert(myLineNum);

}

Word::Word()
{
    word = new string("");
    set<int>* lineNums = new set<int>();
    lineNums->insert(1);
}

void Word::addLineNum(int line)
{
    lineNums->insert(line);
}

//overload comparison operators
//take note that the order of these are important
//since some of the operators are defined in terms of the previously defined ones
bool operator==(Word word1, Word word2)
{
    if (*(word1.word) == *(word2.word))
    {
        return true;
    }
    return false;
}
bool operator!=(Word word1, Word word2)
{
    return !(word1 == word2);
}
bool operator<=(Word word1, Word word2)
{
    if (*(word1.word) <= *(word2.word))
    {
        return true;
    }
    return false;
}
bool operator<(Word word1, Word word2)
{
    if (word1 <= word2 && word1 != word2)
        return true;
    return false;
}
bool operator>(Word word1, Word word2)
{
    return !(word1 <= word2);
}
bool operator>=(Word word1, Word word2)
{
    return !(word1 < word2);
}

std::ostream& operator<<(std::ostream& out, const Word& word1)
{
    out << *(word1.word);
    out << ": ";
    set<int>::iterator it;
    for (it = word1.lineNums->begin(); it != word1.lineNums->end(); it++)
    {
        out << *it << " ";
    }

    return out;
}

最后一个文件是genBST.h。这是一个很长的文件,所以我最后发布它。该文件是作为我的作业的一部分提供给我的,我们不允许对此文件进行更改,否则我们将失去分数。

//************************  genBST.h  **************************
//                 generic binary search tree

#include <queue>
#include <stack>

#ifndef BINARY_SEARCH_TREE
#define BINARY_SEARCH_TREE

template<class T>
class Stack : public stack<T> {
public:
    T pop() {
        T tmp = top();
        stack<T>::pop();
        return tmp;
    }
};

template<class T>
class Queue : public queue<T> {
public:
    T dequeue() {
        T tmp = front();
        queue<T>::pop();
        return tmp;
    }
    void enqueue(const T& el) {
        push(el);
    }
};
template<class T> class BST;

template<class T>
class BSTNode {
public:
    BSTNode() {
        left = right = 0;
    }
    BSTNode(const T& e, BSTNode<T> *l = 0, BSTNode<T> *r = 0) {
        el = e; left = l; right = r;
    }
    T el;
    BSTNode<T> *left, *right;
};

template<class T>
class BST {
public:
    BST() {
        root = 0;
    }
    ~BST() {
        clear();
    }
    void clear() {
        clear(root);
        root = 0;
    }
    bool isEmpty() const {
        return root == 0;
    }
    void preorder() {
        preorder(root);
    }
    void inorder() {
        inorder(root);
    }
    void postorder() {
        postorder(root);
    }
    void insert(const T&);
    void recursiveInsert(const T& el) {
        recursiveInsert(root, el);
    }
    T* search(const T& el) const {
        return search(root, el);
    }
    T* recursiveSearch(const T& el) const {
        return recursiveSearch(root, el);
    }
    void deleteByCopying(BSTNode<T>*&);
    void findAndDeleteByCopying(const T&);
    void deleteByMerging(BSTNode<T>*&);
    void findAndDeleteByMerging(const T&);
    void iterativePreorder();
    void iterativeInorder();
    void iterativePostorder();
    void breadthFirst();
    void MorrisPreorder();
    void MorrisInorder();
    void MorrisPostorder();
    void balance(T*, int, int);
protected:
    BSTNode<T>* root;
    void clear(BSTNode<T>*);
    void recursiveInsert(BSTNode<T>*&, const T&);
    T* search(BSTNode<T>*, const T&) const;
    T* recursiveSearch(BSTNode<T>*, const T&) const;
    void preorder(BSTNode<T>*);
    void inorder(BSTNode<T>*);
    void postorder(BSTNode<T>*);
    virtual void visit(BSTNode<T>* p)
    {
        cout << p->el << ' ';
    }
};



template<class T>
void BST<T>::clear(BSTNode<T> *p) {
    if (p != 0) {
        clear(p->left);
        clear(p->right);
        delete p;
    }
}

template<class T>
void BST<T>::insert(const T& el) {
    BSTNode<T> *p = root, *prev = 0;
    while (p != 0) {  // find a place for inserting new node;
        prev = p;
        if (el < p->el)
            p = p->left;
        else p = p->right;
    }
    if (root == 0)    // tree is empty;
        root = new BSTNode<T>(el);
    else if (el < prev->el)
        prev->left = new BSTNode<T>(el);
    else prev->right = new BSTNode<T>(el);
}

template<class T>
void BST<T>::recursiveInsert(BSTNode<T>*& p, const T& el) {
    if (p == 0)
        p = new BSTNode<T>(el);
    else if (el < p->el)
        recursiveInsert(p->left, el);
    else recursiveInsert(p->right, el);
}

template<class T>
T* BST<T>::search(BSTNode<T>* p, const T& el) const {
    while (p != 0)
        if (el == p->el)
            return &p->el;
        else if (el < p->el)
            p = p->left;
        else p = p->right;
        return 0;
}

template<class T>
T* BST<T>::recursiveSearch(BSTNode<T>* p, const T& el) const {
    if (p != 0)
        if (el == p->el)
            return &p->el;
        else if (el < p->el)
            return recursiveSearch(p->left, el);
        else return recursiveSearch(p->right, el);
    else return 0;
}

template<class T>
void BST<T>::inorder(BSTNode<T> *p) {
    if (p != 0) {
        inorder(p->left);
        visit(p);
        inorder(p->right);
    }
}

template<class T>
void BST<T>::preorder(BSTNode<T> *p) {
    if (p != 0) {
        visit(p);
        preorder(p->left);
        preorder(p->right);
    }
}

template<class T>
void BST<T>::postorder(BSTNode<T>* p) {
    if (p != 0) {
        postorder(p->left);
        postorder(p->right);
        visit(p);
    }
}

template<class T>
void BST<T>::deleteByCopying(BSTNode<T>*& node) {
    BSTNode<T> *previous, *tmp = node;
    if (node->right == 0)                  // node has no right child;
        node = node->left;
    else if (node->left == 0)               // node has no left child;
        node = node->right;
    else {
        tmp = node->left                  // node has both children;
            previous = node;                  // 1.
        while (tmp->right != 0) {         // 2.
            previous = tmp;
            tmp = tmp->right;
        }
        node->el = tmp->el;               // 3.
        if (previous == node)
            previous->left = tmp->left;
        else previous->right = tmp->left; // 4.
    }
    delete tmp;                            // 5.
}

// findAndDeleteByCopying() searches the tree to locate the node containing
// el. If the node is located, the function DeleteByCopying() is called.

template<class T>
void BST<T>::findAndDeleteByCopying(const T& el) {
    BSTNode<T> *p = root, *prev = 0;
    while (p != 0 && !(p->el == el)) {
        prev = p;
        if (el < p->el)
            p = p->left;
        else p = p->right;
    }
    if (p != 0 && p->el == el)
        if (p == root)
            deleteByCopying(root);
        else if (prev->left == p)
            deleteByCopying(prev->left);
        else deleteByCopying(prev->right);
    else if (root != 0)
        cout << "el " << el << " is not in the tree\n";
    else cout << "the tree is empty\n";
}

template<class T>
void BST<T>::deleteByMerging(BSTNode<T>*& node) {
    BSTNode<T> *tmp = node;
    if (node != 0) {
        if (!node->right)           // node has no right child: its left
            node = node->left;     // child (if any) is attached to its parent;
        else if (node->left == 0)   // node has no left child: its right
            node = node->right;    // child is attached to its parent;
        else {                      // be ready for merging subtrees;
            tmp = node->left;      // 1. move left
            while (tmp->right != 0)// 2. and then right as far as possible;
                tmp = tmp->right;
            tmp->right =           // 3. establish the link between the
                node->right;        //    the rightmost node of the left
            //    subtree and the right subtree;
            tmp = node;            // 4.
            node = node->left;     // 5.
        }
        delete tmp;                 // 6.
    }
}

template<class T>
void BST<T>::findAndDeleteByMerging(const T& el) {
    BSTNode<T> *node = root, *prev = 0;
    while (node != 0) {
        if (node->el == el)
            break;
        prev = node;
        if (el < node->el)
            node = node->left;
        else node = node->right;
    }
    if (node != 0 && node->el == el)
        if (node == root)
            deleteByMerging(root);
        else if (prev->left == node)
            deleteByMerging(prev->left);
        else deleteByMerging(prev->right);
    else if (root != 0)
        cout << "el " << el << " is not in the tree\n";
    else cout << "the tree is empty\n";
}

template<class T>
void BST<T>::iterativePreorder() {
    Stack<BSTNode<T>*> travStack;
    BSTNode<T> *p = root;
    if (p != 0) {
        travStack.push(p);
        while (!travStack.empty()) {
            p = travStack.pop();
            visit(p);
            if (p->right != 0)
                travStack.push(p->right);
            if (p->left != 0)             // left child pushed after right
                travStack.push(p->left); // to be on the top of the stack;
        }
    }
}

template<class T>
void BST<T>::iterativeInorder() {
    Stack<BSTNode<T>*> travStack;
    BSTNode<T> *p = root;
    while (p != 0) {
        while (p != 0) {                 // stack the right child (if any)
            if (p->right)                // and the node itself when going
                travStack.push(p->right); // to the left;
            travStack.push(p);
            p = p->left;
        }
        p = travStack.pop();             // pop a node with no left child
        while (!travStack.empty() && p->right == 0) { // visit it and all nodes
            visit(p);                                 // with no right child;
            p = travStack.pop();
        }
        visit(p);                        // visit also the first node with
        if (!travStack.empty())          // a right child (if any);
            p = travStack.pop();
        else p = 0;
    }
}

template<class T>
void BST<T>::iterativePostorder() {
    Stack<BSTNode<T>*> travStack;
    BSTNode<T>* p = root, *q = root;
    while (p != 0) {
        for (; p->left != 0; p = p->left)
            travStack.push(p);
        while (p->right == 0 || p->right == q) {
            visit(p);
            q = p;
            if (travStack.empty())
                return;
            p = travStack.pop();
        }
        travStack.push(p);
        p = p->right;
    }
}

template<class T>
void BST<T>::breadthFirst() {
    Queue<BSTNode<T>*> queue;
    BSTNode<T> *p = root;
    if (p != 0) {
        queue.enqueue(p);
        while (!queue.empty()) {
            p = queue.dequeue();
            visit(p);
            if (p->left != 0)
                queue.enqueue(p->left);
            if (p->right != 0)
                queue.enqueue(p->right);
        }
    }
}

template<class T>
void BST<T>::MorrisInorder() {
    BSTNode<T> *p = root, *tmp;
    while (p != 0)
        if (p->left == 0) {
        visit(p);
        p = p->right;
        }
        else {
            tmp = p->left;
            while (tmp->right != 0 &&// go to the rightmost node of
                tmp->right != p)  // the left subtree or
                tmp = tmp->right;   // to the temporary parent of p;
            if (tmp->right == 0) {   // if 'true' rightmost node was
                tmp->right = p;     // reached, make it a temporary
                p = p->left;        // parent of the current root,
            }
            else {                   // else a temporary parent has been
                visit(p);           // found; visit node p and then cut
                tmp->right = 0;     // the right pointer of the current
                p = p->right;       // parent, whereby it ceases to be
            }                        // a parent;
        }
}

template<class T>
void BST<T>::MorrisPreorder() {
    BSTNode<T> *p = root, *tmp;
    while (p != 0) {
        if (p->left == 0) {
            visit(p);
            p = p->right;
        }
        else {
            tmp = p->left;
            while (tmp->right != 0 &&// go to the rightmost node of
                tmp->right != p)  // the left subtree or
                tmp = tmp->right;   // to the temporary parent of p;
            if (tmp->right == 0) {   // if 'true' rightmost node was
                visit(p);           // reached, visit the root and
                tmp->right = p;     // make the rightmost node a temporary
                p = p->left;        // parent of the current root,
            }
            else {                   // else a temporary parent has been
                tmp->right = 0;     // found; cut the right pointer of
                p = p->right;       // the current parent, whereby it ceases
            }                        // to be a parent;
        }
    }
}

template<class T>
void BST<T>::MorrisPostorder() {
    BSTNode<T> *p = new BSTNode<T>(), *tmp, *q, *r, *s;
    p->left = root;
    while (p != 0)
        if (p->left == 0)
            p = p->right;
        else {
            tmp = p->left;
            while (tmp->right != 0 &&// go to the rightmost node of
                tmp->right != p)  // the left subtree or
                tmp = tmp->right;   // to the temporary parent of p;
            if (tmp->right == 0) {   // if 'true' rightmost node was
                tmp->right = p;     // reached, make it a temporary
                p = p->left;        // parent of the current root,
            }
            else {             // else a temporary parent has been found;
                // process nodes between p->left (included) and p (excluded)
                // extended to the right in modified tree in reverse order;
                // the first loop descends this chain of nodes and reverses
                // right pointers; the second loop goes back, visits nodes,
                // and reverses right pointers again to restore the pointers
                // to their original setting;
                for (q = p->left, r = q->right, s = r->right;
                    r != p; q = r, r = s, s = s->right)
                    r->right = q;
                for (s = q->right; q != p->left;
                    q->right = r, r = q, q = s, s = s->right)
                    visit(q);
                visit(p->left);     // visit node p->left and then cut
                tmp->right = 0;     // the right pointer of the current
                p = p->right;       // parent, whereby it ceases to be
            }                        // a parent;
        }
}

template<class T>
void BST<T>::balance(T data[], int first, int last) {
    if (first <= last) {
        int middle = (first + last) / 2;
        insert(data[middle]);
        balance(data, first, middle - 1);
        balance(data, middle + 1, last);
    }
}

#endif

任何帮助将不胜感激!我还在学习c ++的基础知识,我转学,所以我正在努力学习c ++(而不是Java,这是我之前在其他学校所做的)。提前谢谢!

编辑:哎呀,我愚蠢,下面一行代码:

friend ostream& operator<<(ostream& out, Word& pr);

应该(我认为):

friend ostream& operator<<(ostream, const Word);

然而,在此更改后,我仍然收到以下错误:

Error   1   error C2593: 'operator <<' is ambiguous c:\users\reuben\documents\visual studio 2013\projects\cs321 lab4\cs321 lab4\genbst.h    105 1   CS321 Lab4

105行引用的是函数中的语句(在genBST.h文件中):

virtual void visit(BSTNode<T>* p)
    {
        cout << p->el << ' ';
    }

编辑v2: 好的,我已经改变了代码,现在似乎工作了。我刚刚放置了&lt;&lt;的实现声明中的运算符如下:

class Word{
public:
    string* word;
    set<int>* lineNums;
    void addLineNum(int);
    Word(string*, int);
    Word();
    friend ostream& operator<<(ostream& out, const Word& word1 )
    {
        out << *(word1.word);
        out << ": ";
        set<int>::iterator it;
        for (it = word1.lineNums->begin(); it != word1.lineNums->end(); it++)
        {
            out << *it << " ";
        }

        return out;
    };
    friend bool operator==(Word, Word);
    friend bool operator!=(Word, Word);
    friend bool operator<(Word, Word);
    friend bool operator<=(Word, Word);
    friend bool operator>=(Word, Word);
    friend bool operator>(Word, Word);
};

它似乎现在有效。

2 个答案:

答案 0 :(得分:2)

我注意到你的课程定义中有:

class Word{
public:
    string* word;
    set<int>* lineNums;
    void addLineNum(int);
    Word(string*, int);
    Word();
    friend ostream& operator<<(ostream& out, Word& pr);  

const

之前没有Word & pr

然而,在您的代码中稍后您有:

std::ostream& operator<<(std::ostream& out, const Word& word1)

看,在Word&amp;之前有一个const。 WORD1

应该使它们相同(都有const),我认为

答案 1 :(得分:0)

我在Visual Stdio 2010上试过你的代码(我没有2013)。 在我添加关键字const(在Word&amp; pr之前)之前,我遇到了与您相同的错误。 但是,在我添加const后,它已成功构建。

添加关键字const后出现的错误是什么?在此详细发布。