在使用read.csv.ffdf
读取大型数据集后,其中一列是时间。例如2014-10-18 00:01:02
,该列中有100万行。那一栏是一个因素。如何将其转换为POSIXct
支持的ff
?只需使用as.POSIXct()
,只需将值转换为NA
或者当我在开头读入数据集时,我可以指定该列为POSIXct
吗?
我的目标是获得月份和日期(甚至是小时)。因此,除了转换为POSIXct
之外,我对解决方案持开放态度。
例如,我们有9个2表,
test <- read.csv.ffdf(file="test.csv", header=T, first.rows=-1)
两列是ID(数字类)和时间(因子类)
这是dput
structure(list(virtual = structure(list(VirtualVmode = c("integer",
"integer"), AsIs = c(FALSE, FALSE), VirtualIsMatrix = c(FALSE,
FALSE), PhysicalIsMatrix = c(FALSE, FALSE), PhysicalElementNo = 1:2,
PhysicalFirstCol = c(1L, 1L), PhysicalLastCol = c(1L, 1L)), .Names = c("VirtualVmode",
"AsIs", "VirtualIsMatrix", "PhysicalIsMatrix", "PhysicalElementNo",
"PhysicalFirstCol", "PhysicalLastCol"), row.names = c("ID", "time"
), class = "data.frame", Dim = c(9L, 2L), Dimorder = 1:2), physical = structure(list(
ID = structure(list(), physical = <pointer: 0x000000000821ab20>, virtual = structure(list(), Length = 9L, Symmetric = FALSE), class = c("ff_vector",
"ff")), time = structure(list(), physical = <pointer: 0x000000000821abb0>, virtual = structure(list(), Length = 9L, Symmetric = FALSE, Levels = c("10/17/2003 0:01",
"12/5/1999 0:02", "2/1/2000 0:01", "3/23/1998 0:01", "3/24/2013 0:00",
"5/29/2004 0:00", "5/9/1985 0:01", "6/14/2010 0:01", "6/25/2008 0:02"
), ramclass = "factor"), class = c("ff_vector", "ff"))), .Names = c("ID",
"time")), row.names = NULL), .Names = c("virtual", "physical",
"row.names"), class = "ffdf")
答案 0 :(得分:1)
您可以在包装ffbase中使用如下所示的玩具示例。最好的。
require(ff)
x <- data.frame(id = 1:100000, timepoint = seq(from = Sys.time(), by = "sec", length.out = 100000))
x$timepoint <- as.factor(x$timepoint)
xff <- as.ffdf(x)
class(xff)
require(ffbase)
xff$time <- with(xff, as.POSIXct(as.character(timepoint)), by = 10000)
ramclass(xff$time)
[1] "POSIXct" "POSIXt"
str(xff[1:10, ])
'data.frame': 10 obs. of 3 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10
$ timepoint: Factor w/ 100000 levels "2014-10-20 09:14:10",..: 1 2 3 4 5 6 7 8 9 10
$ time : POSIXct, format: "2014-10-20 09:14:10" "2014-10-20 09:14:11" "2014-10-20 09:14:12" "2014-10-20 09:14:13" ...
答案 1 :(得分:0)
在读取数据时使用colClasses
。
例如您的两列示例:ID
(数字类)和time
(因子类):
test <- read.csv.ffdf(file="test.csv", header=T, first.rows=-1,colClasses = c("integer","POSIXct"))