在3.3中他们有grate news - 在GPU上仅使用PETC SNES进行FEM求解的示例。我是PETSc的新手并且有一个问题 - 我需要在3d空间中创建一个球体并对其施加力...所以我需要一个三维有限元模块(如果可能的话,在GPU上,我的情况下不需要MPI)。然而,当我see the simple example他们提供时,我有点伤痕累累:
static const char help[] = "Testbed for FEM operations on the GPU.\n\n";
#include<petscdmplex.h>
#include<petscsnes.h>
#define NUM_FIELDS 1
PetscInt spatialDim = 0;
typedef enum {LAPLACIAN = 0, ELASTICITY} OpType;
typedef struct {
PetscFEM fem; /* REQUIRED to use DMPlexComputeResidualFEM() */
DM dm; /* The solution DM */
PetscInt debug; /* The debugging level */
PetscMPIInt rank; /* The process rank */
PetscMPIInt numProcs; /* The number of processes */
PetscInt dim; /* The topological mesh dimension */
PetscBool interpolate; /* Generate intermediate mesh elements */
PetscReal refinementLimit; /* The largest allowable cell volume */
PetscBool refinementUniform; /* Uniformly refine the mesh */
PetscInt refinementRounds; /* The number of uniform refinements */
char partitioner[2048]; /* The graph partitioner */
PetscBool computeFunction; /* The flag for computing a residual */
PetscBool computeJacobian; /* The flag for computing a Jacobian */
PetscBool gpu; /* The flag for GPU integration */
OpType op; /* The type of PDE operator (should use FFC/Ignition here) */
PetscBool showResidual, showJacobian;
PetscLogEvent createMeshEvent, residualEvent, residualBatchEvent, jacobianEvent, jacobianBatchEvent, integrateBatchCPUEvent, integrateBatchGPUEvent, integrateGPUOnlyEvent;
/* Element definition */
PetscFE fe[NUM_FIELDS];
PetscFE feAux[1];
void (*f0Funcs[NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f0[]);
void (*f1Funcs[NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f1[]);
void (*g0Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g0[]);
void (*g1Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g1[]);
void (*g2Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g2[]);
void (*g3Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g3[]);
void (**exactFuncs)(const PetscReal x[], PetscScalar *u, void *ctx);
} AppCtx;
void quadratic_2d(const PetscReal x[], PetscScalar u[], void *ctx)
{
u[0] = x[0]*x[0] + x[1]*x[1];
};
void quadratic_2d_elas(const PetscReal x[], PetscScalar u[], void *ctx)
{
u[0] = x[0]*x[0] + x[1]*x[1];
u[1] = x[0]*x[0] + x[1]*x[1];
};
void f0_lap(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f0[])
{
f0[0] = 4.0;
}
/* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
void f1_lap(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f1[])
{
PetscInt d;
for (d = 0; d < spatialDim; ++d) {f1[d] = a[0]*gradU[d];}
}
/* < \nabla v, \nabla u + {\nabla u}^T >
This just gives \nabla u, give the perdiagonal for the transpose */
void g3_lap(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g3[])
{
PetscInt d;
for (d = 0; d < spatialDim; ++d) {g3[d*spatialDim+d] = 1.0;}
}
void f0_elas(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f0[])
{
const PetscInt Ncomp = spatialDim;
PetscInt comp;
for (comp = 0; comp < Ncomp; ++comp) f0[comp] = 3.0;
}
/* gradU[comp*dim+d] = {u_x, u_y, v_x, v_y} or {u_x, u_y, u_z, v_x, v_y, v_z, w_x, w_y, w_z}
u[Ncomp] = {p} */
void f1_elas(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f1[])
{
const PetscInt dim = spatialDim;
const PetscInt Ncomp = spatialDim;
PetscInt comp, d;
for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0; d < dim; ++d) {
f1[comp*dim+d] = 0.5*(gradU[comp*dim+d] + gradU[d*dim+comp]);
}
f1[comp*dim+comp] -= u[Ncomp];
}
}
/* < \nabla v, \nabla u + {\nabla u}^T >
This just gives \nabla u, give the perdiagonal for the transpose */
void g3_elas(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g3[])
{
const PetscInt dim = spatialDim;
const PetscInt Ncomp = spatialDim;
PetscInt compI, d;
for (compI = 0; compI < Ncomp; ++compI) {
for (d = 0; d < dim; ++d) {
g3[((compI*Ncomp+compI)*dim+d)*dim+d] = 1.0;
}
}
}
#undef __FUNCT__
#define __FUNCT__ "ProcessOptions"
PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
{
const char *opTypes[2] = {"laplacian", "elasticity"};
PetscInt op;
PetscErrorCode ierr;
PetscFunctionBeginUser;
options->debug = 0;
options->dim = 2;
options->interpolate = PETSC_FALSE;
options->refinementLimit = 0.0;
options->refinementUniform = PETSC_FALSE;
options->refinementRounds = 1;
options->computeFunction = PETSC_FALSE;
options->computeJacobian = PETSC_FALSE;
options->gpu = PETSC_FALSE;
options->op = LAPLACIAN;
options->showResidual = PETSC_TRUE;
options->showJacobian = PETSC_TRUE;
ierr = MPI_Comm_size(comm, &options->numProcs);CHKERRQ(ierr);
ierr = MPI_Comm_rank(comm, &options->rank);CHKERRQ(ierr);
ierr = PetscOptionsBegin(comm, "", "Bratu Problem Options", "DMPLEX");CHKERRQ(ierr);
ierr = PetscOptionsInt("-debug", "The debugging level", "ex52.c", options->debug, &options->debug, NULL);CHKERRQ(ierr);
ierr = PetscOptionsInt("-dim", "The topological mesh dimension", "ex52.c", options->dim, &options->dim, NULL);CHKERRQ(ierr);
spatialDim = options->dim;
ierr = PetscOptionsBool("-interpolate", "Generate intermediate mesh elements", "ex52.c", options->interpolate, &options->interpolate, NULL);CHKERRQ(ierr);
ierr = PetscOptionsReal("-refinement_limit", "The largest allowable cell volume", "ex52.c", options->refinementLimit, &options->refinementLimit, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-refinement_uniform", "Uniformly refine the mesh", "ex52.c", options->refinementUniform, &options->refinementUniform, NULL);CHKERRQ(ierr);
ierr = PetscOptionsInt("-refinement_rounds", "The number of uniform refinements", "ex52.c", options->refinementRounds, &options->refinementRounds, NULL);CHKERRQ(ierr);
ierr = PetscStrcpy(options->partitioner, "chaco");CHKERRQ(ierr);
ierr = PetscOptionsString("-partitioner", "The graph partitioner", "ex52.c", options->partitioner, options->partitioner, 2048, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-compute_function", "Compute the residual", "ex52.c", options->computeFunction, &options->computeFunction, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-compute_jacobian", "Compute the Jacobian", "ex52.c", options->computeJacobian, &options->computeJacobian, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-gpu", "Use the GPU for integration method", "ex52.c", options->gpu, &options->gpu, NULL);CHKERRQ(ierr);
op = options->op;
ierr = PetscOptionsEList("-op_type","Type of PDE operator","ex52.c",opTypes,2,opTypes[options->op],&op,NULL);CHKERRQ(ierr);
options->op = (OpType) op;
ierr = PetscOptionsBool("-show_residual", "Output the residual for verification", "ex52.c", options->showResidual, &options->showResidual, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-show_jacobian", "Output the Jacobian for verification", "ex52.c", options->showJacobian, &options->showJacobian, NULL);CHKERRQ(ierr);
ierr = PetscOptionsEnd();
ierr = PetscLogEventRegister("CreateMesh", DM_CLASSID, &options->createMeshEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("Residual", SNES_CLASSID, &options->residualEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("ResidualBatch", SNES_CLASSID, &options->residualBatchEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("Jacobian", SNES_CLASSID, &options->jacobianEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("JacobianBatch", SNES_CLASSID, &options->jacobianBatchEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("IntegBatchCPU", SNES_CLASSID, &options->integrateBatchCPUEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("IntegBatchGPU", SNES_CLASSID, &options->integrateBatchGPUEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("IntegGPUOnly", SNES_CLASSID, &options->integrateGPUOnlyEvent);CHKERRQ(ierr);
PetscFunctionReturn(0);
};
#undef __FUNCT__
#define __FUNCT__ "CreateMesh"
PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
{
PetscInt dim = user->dim;
PetscBool interpolate = user->interpolate;
PetscReal refinementLimit = user->refinementLimit;
PetscBool refinementUniform = user->refinementUniform;
PetscInt refinementRounds = user->refinementRounds;
const char *partitioner = user->partitioner;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscLogEventBegin(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr);
ierr = DMPlexCreateBoxMesh(comm, dim, interpolate, dm);CHKERRQ(ierr);
{
DM refinedMesh = NULL;
DM distributedMesh = NULL;
/* Refine mesh using a volume constraint */
ierr = DMPlexSetRefinementLimit(*dm, refinementLimit);CHKERRQ(ierr);
ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr);
if (refinedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = refinedMesh;
}
/* Distribute mesh over processes */
ierr = DMPlexDistribute(*dm, partitioner, 0, NULL, &distributedMesh);CHKERRQ(ierr);
if (distributedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = distributedMesh;
}
/* Use regular refinement in parallel */
if (refinementUniform) {
PetscInt r;
ierr = DMPlexSetRefinementUniform(*dm, refinementUniform);CHKERRQ(ierr);
for (r = 0; r < refinementRounds; ++r) {
ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr);
if (refinedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = refinedMesh;
}
}
}
}
ierr = PetscObjectSetName((PetscObject) *dm, "Mesh");CHKERRQ(ierr);
ierr = DMSetFromOptions(*dm);CHKERRQ(ierr);
ierr = PetscLogEventEnd(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr);
user->dm = *dm;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupElement"
PetscErrorCode SetupElement(DM dm, AppCtx *user)
{
const PetscInt dim = user->dim;
PetscFE fem;
PetscQuadrature q;
DM K;
PetscSpace P;
PetscDualSpace Q;
PetscInt order;
PetscErrorCode ierr;
PetscFunctionBegin;
/* Create space */
ierr = PetscSpaceCreate(PetscObjectComm((PetscObject) dm), &P);CHKERRQ(ierr);
ierr = PetscSpaceSetFromOptions(P);CHKERRQ(ierr);
ierr = PetscSpacePolynomialSetNumVariables(P, dim);CHKERRQ(ierr);
ierr = PetscSpaceSetUp(P);CHKERRQ(ierr);
ierr = PetscSpaceGetOrder(P, &order);CHKERRQ(ierr);
/* Create dual space */
ierr = PetscDualSpaceCreate(PetscObjectComm((PetscObject) dm), &Q);CHKERRQ(ierr);
ierr = PetscDualSpaceCreateReferenceCell(Q, dim, PETSC_TRUE, &K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetDM(Q, K);CHKERRQ(ierr);
ierr = DMDestroy(&K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetOrder(Q, order);CHKERRQ(ierr);
ierr = PetscDualSpaceSetFromOptions(Q);CHKERRQ(ierr);
ierr = PetscDualSpaceSetUp(Q);CHKERRQ(ierr);
/* Create element */
ierr = PetscFECreate(PetscObjectComm((PetscObject) dm), &fem);CHKERRQ(ierr);
ierr = PetscFESetFromOptions(fem);CHKERRQ(ierr);
ierr = PetscFESetBasisSpace(fem, P);CHKERRQ(ierr);
ierr = PetscFESetDualSpace(fem, Q);CHKERRQ(ierr);
ierr = PetscFESetNumComponents(fem, 1);CHKERRQ(ierr);
ierr = PetscFESetUp(fem);CHKERRQ(ierr);
ierr = PetscSpaceDestroy(&P);CHKERRQ(ierr);
ierr = PetscDualSpaceDestroy(&Q);CHKERRQ(ierr);
/* Create quadrature */
ierr = PetscDTGaussJacobiQuadrature(dim, order, -1.0, 1.0, &q);CHKERRQ(ierr);
ierr = PetscFESetQuadrature(fem, q);CHKERRQ(ierr);
ierr = PetscQuadratureDestroy(&q);CHKERRQ(ierr);
user->fe[0] = fem;
user->fem.fe = user->fe;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupMaterialElement"
PetscErrorCode SetupMaterialElement(DM dm, AppCtx *user)
{
const PetscInt dim = user->dim;
const char *prefix = "mat_";
PetscFE fem;
PetscQuadrature q;
DM K;
PetscSpace P;
PetscDualSpace Q;
PetscInt order;
PetscErrorCode ierr;
PetscFunctionBegin;
/* Create space */
ierr = PetscSpaceCreate(PetscObjectComm((PetscObject) dm), &P);CHKERRQ(ierr);
ierr = PetscObjectSetOptionsPrefix((PetscObject) P, prefix);CHKERRQ(ierr);
ierr = PetscSpaceSetFromOptions(P);CHKERRQ(ierr);
ierr = PetscSpacePolynomialSetNumVariables(P, dim);CHKERRQ(ierr);
ierr = PetscSpaceSetUp(P);CHKERRQ(ierr);
ierr = PetscSpaceGetOrder(P, &order);CHKERRQ(ierr);
/* Create dual space */
ierr = PetscDualSpaceCreate(PetscObjectComm((PetscObject) dm), &Q);CHKERRQ(ierr);
ierr = PetscObjectSetOptionsPrefix((PetscObject) Q, prefix);CHKERRQ(ierr);
ierr = PetscDualSpaceCreateReferenceCell(Q, dim, PETSC_TRUE, &K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetDM(Q, K);CHKERRQ(ierr);
ierr = DMDestroy(&K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetOrder(Q, order);CHKERRQ(ierr);
ierr = PetscDualSpaceSetFromOptions(Q);CHKERRQ(ierr);
ierr = PetscDualSpaceSetUp(Q);CHKERRQ(ierr);
/* Create element */
ierr = PetscFECreate(PetscObjectComm((PetscObject) dm), &fem);CHKERRQ(ierr);
ierr = PetscObjectSetOptionsPrefix((PetscObject) fem, prefix);CHKERRQ(ierr);
ierr = PetscFESetFromOptions(fem);CHKERRQ(ierr);
ierr = PetscFESetBasisSpace(fem, P);CHKERRQ(ierr);
ierr = PetscFESetDualSpace(fem, Q);CHKERRQ(ierr);
ierr = PetscFESetNumComponents(fem, 1);CHKERRQ(ierr);
ierr = PetscSpaceDestroy(&P);CHKERRQ(ierr);
ierr = PetscDualSpaceDestroy(&Q);CHKERRQ(ierr);
/* Create quadrature */
ierr = PetscDTGaussJacobiQuadrature(dim, PetscMax(order, 1), -1.0, 1.0, &q);CHKERRQ(ierr);
ierr = PetscFESetQuadrature(fem, q);CHKERRQ(ierr);
user->feAux[0] = fem;
user->fem.feAux = user->feAux;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "DestroyElement"
PetscErrorCode DestroyElement(AppCtx *user)
{
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscFEDestroy(&user->fe[0]);CHKERRQ(ierr);
ierr = PetscFEDestroy(&user->feAux[0]);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupSection"
PetscErrorCode SetupSection(DM dm, AppCtx *user)
{
PetscSection section;
PetscInt dim = user->dim;
PetscInt numBC = 0;
PetscInt numComp[1];
const PetscInt *numDof;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscFEGetNumComponents(user->fe[0], &numComp[0]);CHKERRQ(ierr);
ierr = PetscFEGetNumDof(user->fe[0], &numDof);CHKERRQ(ierr);
ierr = DMPlexCreateSection(dm, dim, 1, numComp, numDof, numBC, NULL, NULL, NULL, §ion);CHKERRQ(ierr);
ierr = DMSetDefaultSection(dm, section);CHKERRQ(ierr);
ierr = PetscSectionDestroy(§ion);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupMaterial"
PetscErrorCode SetupMaterial(DM dm, DM dmAux, AppCtx *user)
{
Vec epsilon;
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = DMCreateLocalVector(dmAux, &epsilon);CHKERRQ(ierr);
ierr = VecSet(epsilon, 1.0);CHKERRQ(ierr);
ierr = PetscObjectCompose((PetscObject) dm, "A", (PetscObject) epsilon);CHKERRQ(ierr);
ierr = VecDestroy(&epsilon);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc, char **argv)
{
DM dm, dmAux;
SNES snes;
AppCtx user;
PetscInt numComp;
PetscErrorCode ierr;
ierr = PetscInitialize(&argc, &argv, NULL, help);CHKERRQ(ierr);
#if !defined(PETSC_HAVE_CUDA) && !defined(PETSC_HAVE_OPENCL)
SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_SUP, "This example requires CUDA or OpenCL support.");
#endif
ierr = ProcessOptions(PETSC_COMM_WORLD, &user);CHKERRQ(ierr);
ierr = SNESCreate(PETSC_COMM_WORLD, &snes);CHKERRQ(ierr);
ierr = CreateMesh(PETSC_COMM_WORLD, &user, &dm);CHKERRQ(ierr);
ierr = SNESSetDM(snes, dm);CHKERRQ(ierr);
ierr = SetupElement(user.dm, &user);CHKERRQ(ierr);
ierr = DMClone(user.dm, &dmAux);CHKERRQ(ierr);
ierr = PetscObjectCompose((PetscObject) dm, "dmAux", (PetscObject) dmAux);CHKERRQ(ierr);
ierr = SetupMaterialElement(dmAux, &user);CHKERRQ(ierr);
ierr = PetscFEGetNumComponents(user.fe[0], &numComp);CHKERRQ(ierr);
ierr = PetscMalloc(numComp * sizeof(void (*)(const PetscReal[], PetscScalar *, void *)), &user.exactFuncs);CHKERRQ(ierr);
switch (user.op) {
case LAPLACIAN:
user.f0Funcs[0] = f0_lap;
user.f1Funcs[0] = f1_lap;
user.g0Funcs[0] = NULL;
user.g1Funcs[0] = NULL;
user.g2Funcs[0] = NULL;
user.g3Funcs[0] = g3_lap;
user.exactFuncs[0] = quadratic_2d;
break;
case ELASTICITY:
user.f0Funcs[0] = f0_elas;
user.f1Funcs[0] = f1_elas;
user.g0Funcs[0] = NULL;
user.g1Funcs[0] = NULL;
user.g2Funcs[0] = NULL;
user.g3Funcs[0] = g3_elas;
user.exactFuncs[0] = quadratic_2d_elas;
break;
default:
SETERRQ1(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid PDE operator %d", user.op);
}
user.fem.f0Funcs = user.f0Funcs;
user.fem.f1Funcs = user.f1Funcs;
user.fem.g0Funcs = user.g0Funcs;
user.fem.g1Funcs = user.g1Funcs;
user.fem.g2Funcs = user.g2Funcs;
user.fem.g3Funcs = user.g3Funcs;
user.fem.bcFuncs = user.exactFuncs;
user.fem.bcCtxs = NULL;
ierr = SetupSection(dm, &user);CHKERRQ(ierr);
ierr = SetupSection(dmAux, &user);CHKERRQ(ierr);
ierr = SetupMaterial(dm, dmAux, &user);CHKERRQ(ierr);
ierr = DMSNESSetFunctionLocal(dm, (PetscErrorCode (*)(DM,Vec,Vec,void*))DMPlexComputeResidualFEM,&user);CHKERRQ(ierr);
ierr = DMSNESSetJacobianLocal(dm, (PetscErrorCode (*)(DM,Vec,Mat,Mat,void*))DMPlexComputeJacobianFEM,&user);CHKERRQ(ierr);
if (user.computeFunction) {
Vec X, F;
ierr = DMGetGlobalVector(dm, &X);CHKERRQ(ierr);
ierr = DMGetGlobalVector(dm, &F);CHKERRQ(ierr);
ierr = DMPlexProjectFunction(dm, user.fe, user.exactFuncs, NULL, INSERT_VALUES, X);CHKERRQ(ierr);
ierr = SNESComputeFunction(snes, X, F);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(dm, &X);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(dm, &F);CHKERRQ(ierr);
}
if (user.computeJacobian) {
Vec X;
Mat J;
ierr = DMGetGlobalVector(dm, &X);CHKERRQ(ierr);
ierr = DMSetMatType(dm,MATAIJ);CHKERRQ(ierr);
ierr = DMCreateMatrix(dm, &J);CHKERRQ(ierr);
ierr = SNESComputeJacobian(snes, X, J, J);CHKERRQ(ierr);
ierr = MatDestroy(&J);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(dm, &X);CHKERRQ(ierr);
}
ierr = PetscFree(user.exactFuncs);CHKERRQ(ierr);
ierr = DestroyElement(&user);CHKERRQ(ierr);
ierr = DMDestroy(&dmAux);CHKERRQ(ierr);
ierr = DMDestroy(&dm);CHKERRQ(ierr);
ierr = SNESDestroy(&snes);CHKERRQ(ierr);
ierr = PetscFinalize();
return 0;
}
干净易读,像代码一样......
然而阅读它让我头疼,因为来自子弹phisix \ gamedev backgrownd我没有看到3个主要的东西:在哪里设置尺寸,创建网格,并且施加力?
任何人都可以解释如何使用PETSc SNES设置三维有限元求解器(高亮显示如何设置尺寸,进给网格,施加力并插入结果)?
答案 0 :(得分:3)
我没有使用这些库的经验,但这至少是一个开始(还不完整的答案)。我看到的一件事非常令人费解的是主程序中似乎没有循环。不要感觉不好,缺乏评论,编码风格和在线文档使得这很难理解。
至少在函数中创建了网格,从这里调用(在main中):
ierr = CreateMesh(PETSC_COMM_WORLD, &user, &dm);CHKERRQ(ierr);
该功能在此处的代码中进一步定义:
PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
{
PetscInt dim = user->dim;
PetscBool interpolate = user->interpolate;
PetscReal refinementLimit = user->refinementLimit;
PetscBool refinementUniform = user->refinementUniform;
PetscInt refinementRounds = user->refinementRounds;
const char *partitioner = user->partitioner;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscLogEventBegin(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr);
ierr = DMPlexCreateBoxMesh(comm, dim, interpolate, dm);CHKERRQ(ierr);
{
DM refinedMesh = NULL;
DM distributedMesh = NULL;
/* Refine mesh using a volume constraint */
ierr = DMPlexSetRefinementLimit(*dm, refinementLimit);CHKERRQ(ierr);
ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr);
if (refinedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = refinedMesh;
}
/* Distribute mesh over processes */
ierr = DMPlexDistribute(*dm, partitioner, 0, NULL, &distributedMesh);CHKERRQ(ierr);
if (distributedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = distributedMesh;
}
/* Use regular refinement in parallel */
if (refinementUniform) {
PetscInt r;
ierr = DMPlexSetRefinementUniform(*dm, refinementUniform);CHKERRQ(ierr);
for (r = 0; r < refinementRounds; ++r) {
ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr);
if (refinedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = refinedMesh;
}
}
}
}
ierr = PetscObjectSetName((PetscObject) *dm, "Mesh");CHKERRQ(ierr);
ierr = DMSetFromOptions(*dm);CHKERRQ(ierr);
ierr = PetscLogEventEnd(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr);
user->dm = *dm;
PetscFunctionReturn(0);
}
答案 1 :(得分:3)
1)PETSc选项通常从命令行设置。请参阅PetscOptionsInt(),这是PetscOptionsGetInt()的并行版本。相关的代码行是:
ierr = PetscOptionsInt("-dim", "The topological mesh dimension", "ex52.c", options->dim, &options->dim, NULL);CHKERRQ(ierr);
2)Jonathan已经提到了网格创建功能:
PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm) { ... }
3)在SNESSetFunction帮助中,您将能够看到正在尝试解决f'(x) x = -f(x)
,其中为f'(x)
和f(x)
形成矩阵(见http://acts.nersc.gov/events/Workshop2003/slides/Gropp.pdf第71页。因此,力量进入f'(x)
和f(x)
的矩阵的装配。解决等式f'(x) x = -f(x)
的代码的相关部分是:
ierr = SNESComputeFunction(snes, X, F);CHKERRQ(ierr);
4)要查看SNESComputFunction(ones, X, F);
函数调用的结果,您可能希望像src/snes/examples/tutorials/ex12.c
一样使用像VecChop()/ VecView()这样的函数。
最后,如果您不希望手上有很多时间,我强烈建议您考虑是否可以在GPU上使用以下替代方案 - 使用更高级别的软件包,例如MOOSE或FEniCS直接与PETSc整合。使用更高级别的包将为您节省大量时间。例如,在FEniCS中,指定方程的弱形式而不是手工组装矩阵。 FEniCS的另一个有用之处在于它可以指定球形网格。在FEniCS文档中的以下page中,相关行仅为mesh = UnitSphere(10)
。