因此,我必须计算网格左上角和左下角之间的所有可能路径。我的问题来自于每个广场必须只访问一次。不低于或等于。
现在我只是通过递归来强制它。 7x7网格需要约30秒,但8x8需要+ 24h(没有让它完成)。我试图通过检查新的递归方法调用是否能够通过跟随边缘并查看它是否与自身或终点线相遇来连接到终点来解决问题。我也试过"填充"最后插入的方格中的网格。他们两个都工作,但他们甚至比暴力强迫更慢。
我想亲自发现这个,但是一些帮助将不胜感激。我很高兴10x10网格可以解决。我是否接近这个权利(递归并检查这个递归分支是否甚至可以在进行新的递归方法调用之前达到目标),还是应该使用动态编程或其他方法来处理它?</ p>
答案 0 :(得分:0)
我怀疑有一个封闭形式的公式。但是,动态编程将起作用。高层次的想法是一次一行地工作,记住与什么相关的东西。在5x5之旅中,如
v>>>v
v^v<<
v^>>v
v^v<<
>^>>.,
我们可能会检查前两行的路径片段
v>>>v
v^v<<,
以及它们提供的界面:
011--.
标记为-
的顶点不会连接到外部。标记为0
的顶点连接到起始方块。标记为1
的顶点是路径的两端。
入射到行的边缘将分区显示为由行内部边缘连接的间隔,其中每个间隔看起来像
之一|___| |___ ___| ___
| | | |
如果非空,只有|
。给定接口(状态)和行(字母),我们可以计算组合的接口(如果有效)应该是什么。
我时间紧迫,你不需要所有的细节,所以让我只是转储我的Python 3代码来实现这个。
#!/usr/bin/env python3
import collections
import itertools
if False:
def all_pairings(m, i):
assert isinstance(m, int)
assert m >= 0
assert isinstance(i, int)
assert i >= 0
if m == 0:
yield ()
else:
for k in range(m):
for p in all_pairings(k, i + 1):
for q in all_pairings(m - 1 - k, i + 1 + k):
yield (i,) + p + (i,) + q
def all_states(n):
assert isinstance(n, int)
assert n >= 0
for m in range(1, (n + 1) // 2 + 1):
for indexes in itertools.combinations(range(n), m * 2 - 1):
state = [None] * n
for k in range(m):
for p in all_pairings(k, 0):
for q in all_pairings(m - 1 - k, k + 1):
for v, i in zip(indexes, p + (k,) + q):
state[v] = i
yield tuple(state)
def connections_from_state(state):
return tuple(v for v, i in enumerate(state) if i is not None)
def all_partitions(n):
assert isinstance(n, int)
assert n >= 0
boundaries = [0, n]
for k in range(n):
for c in itertools.combinations(range(1, n), k):
boundaries[1:-1] = c
yield tuple(boundaries)
def all_letters(n):
assert isinstance(n, int)
assert n >= 0
for partition in all_partitions(n):
factors = []
for i in range(len(partition) - 1):
v = partition[i]
w = partition[i + 1] - 1
factor = [((v, False), (w, True))]
if v != w:
factor.append(((v, False), (w, False)))
factor.append(((v, True), (w, False)))
factor.append(((v, True), (w, True)))
factors.append(factor)
yield from itertools.product(*factors)
def inner_connections_from_letter(letter):
return tuple(x for ends in letter for x, outer_x in ends if not outer_x)
def outer_connections_from_letter(letter):
return tuple(x for ends in letter for x, outer_x in ends if outer_x)
def union_find(n):
return list(range(n))
def find(parent, v):
while parent[v] != v:
parent[v] = parent[parent[v]]
v = parent[v]
return v
def union(parent, v, w):
if v == w:
return True
v = find(parent, v)
w = find(parent, w)
if v < w:
parent[w] = v
return True
elif v == w:
return False
else:
parent[v] = w
return True
def transition(state, letter):
assert connections_from_state(state) == inner_connections_from_letter(letter)
n = len(state)
parent = union_find(n)
other_end = {}
for v, i in enumerate(state):
if i is not None and not union(parent, v, other_end.setdefault(i, v)):
return None
for (v, outer_v), (w, outer_w) in letter:
if not union(parent, v, w):
return None
next_state = [None] * n
label = {}
for v in outer_connections_from_letter(letter):
w = find(parent, v)
if w not in label:
label[w] = len(label)
next_state[v] = label[w]
return tuple(next_state)
def count_paths(n):
counts = collections.Counter({(0,) + (None,) * (n - 1): 1})
letters_from_inner_connections = collections.defaultdict(list)
for letter in all_letters(n):
letters_from_inner_connections[inner_connections_from_letter(letter)].append(letter)
for j in range(n):
next_counts = collections.Counter()
for state, count in counts.items():
for letter in letters_from_inner_connections[connections_from_state(state)]:
next_state = transition(state, letter)
if next_state is not None:
next_counts[next_state] += count
counts = next_counts
return counts[(None,) * (n - 1) + (0,)]
def slow_count_paths_rec(n, i, j, visited):
if len(visited) == n ** 2 and i == n - 1 and j == n - 1:
return 1
elif i < 0 or n <= i or j < 0 or n <= j or (i, j) in visited:
return 0
else:
visited.add((i, j))
total = 0
total += slow_count_paths_rec(n, i - 1, j, visited)
total += slow_count_paths_rec(n, i, j - 1, visited)
total += slow_count_paths_rec(n, i, j + 1, visited)
total += slow_count_paths_rec(n, i + 1, j, visited)
visited.remove((i, j))
return total
def slow_count_paths(n):
return slow_count_paths_rec(n, 0, 0, {(n - 1, n - 1)})
print(slow_count_paths(5))
print(count_paths(5))