Pandas groupby(),agg() - 如何在没有多索引的情况下返回结果?

时间:2014-10-12 10:01:22

标签: python pandas group-by aggregate multi-index

我有一个数据框:

pe_odds[ [ 'EVENT_ID', 'SELECTION_ID', 'ODDS' ] ]
Out[67]: 
     EVENT_ID  SELECTION_ID   ODDS
0   100429300       5297529  18.00
1   100429300       5297529  20.00
2   100429300       5297529  21.00
3   100429300       5297529  22.00
4   100429300       5297529  23.00
5   100429300       5297529  24.00
6   100429300       5297529  25.00

当我使用groupby和agg时,我得到的结果是多索引:

pe_odds.groupby( [ 'EVENT_ID', 'SELECTION_ID' ] )[ 'ODDS' ].agg( [ np.min, np.max ] )
Out[68]: 
                         amin   amax
EVENT_ID  SELECTION_ID              
100428417 5490293        1.71   1.71
          5881623        1.14   1.35
          5922296        2.00   2.00
          5956692        2.00   2.02
100428419 603721         2.44   2.90
          4387436        4.30   6.20
          4398859        1.23   1.35
          4574687        1.35   1.46
          4881396       14.50  19.00
          6032606        2.94   4.20
          6065580        2.70   5.80
          6065582        2.42   3.65
100428421 5911426        2.22   2.52

我尝试使用as_index返回没有multi_index的结果:

pe_odds.groupby( [ 'EVENT_ID', 'SELECTION_ID' ], as_index=False )[ 'ODDS' ].agg( [ np.min, np.max ], as_index=False )

但它仍然给我一个多指数。

我可以使用.reset_index(),但速度非常慢:

pe_odds.groupby( [ 'EVENT_ID', 'SELECTION_ID' ] )[ 'ODDS' ].agg( [ np.min, np.max ] ).reset_index()

pe_odds.groupby( [ 'EVENT_ID', 'SELECTION_ID' ] )[ 'ODDS' ].agg( [ np.min, np.max ] ).reset_index()
Out[69]: 
     EVENT_ID  SELECTION_ID   amin   amax
0   100428417       5490293   1.71   1.71
1   100428417       5881623   1.14   1.35
2   100428417       5922296   2.00   2.00
3   100428417       5956692   2.00   2.02
4   100428419        603721   2.44   2.90
5   100428419       4387436   4.30   6.20

如何在没有Multi-index的情况下使用groupby和/或agg函数的参数返回结果。而不必诉诸使用reset_index()?

1 个答案:

答案 0 :(得分:16)

以下电话:

>>> gr = df.groupby(['EVENT_ID', 'SELECTION_ID'], as_index=False)
>>> res = gr.agg({'ODDS':[np.min, np.max]})
>>> res
    EVENT_ID SELECTION_ID ODDS     
                          amin amax
0  100429300      5297529   18   25
1  100429300      5297559   30   38

返回一个包含mulit-index 的框架。如果您不希望列成为多索引,您可以这样做:

>>> res.columns = list(map(''.join, res.columns.values))
>>> res
    EVENT_ID  SELECTION_ID  ODDSamin  ODDSamax
0  100429300       5297529        18        25
1  100429300       5297559        30        38