我已经从算法手册的介绍中编写了MAX-HEAPIFY(A,i)方法。现在我想用while循环编写它而不用递归。你能帮帮我吗?
答案 0 :(得分:2)
你可以使用带有条件你的i< = HEAPSIZE并使用所有其他相同条件的while循环,除非你找到正确的位置只是打破循环。 代码: -
while ( i < = heapsize) {
le <- left(i)
ri <- right(i)
if (le<=heapsize) and (A[le]>A[i])
largest <- le
else
largest <- i
if (ri<=heapsize) and (A[ri]>A[largest])
largest <- ri
if (largest != i)
{
exchange A[i] <-> A[largest]
i <- largest
}
else
break
}
答案 1 :(得分:0)
上面的解决方案有效,但我认为以下代码更接近递归版本
(* Code TP compatible *)
const maxDim = 1000;
type TElem = integer;
TArray = array[1..maxDim]of TElem
procedure heapify(var A:TArray;i,heapsize:integer);
var l,r,largest,save:integer;
temp:TElem;
(*i - index of node that violates heap property
l - index of left child of node with index i
r - index of right child of node with index i
largest - index of largest element of the triplet (i,l,r)
save - auxiliary variable to save the value of i
temp - auxiliary variable used for swapping *)
begin
repeat
l:=2*i;
r:=2*i + 1;
if(l <= heapsize) and (A[l] > A[i]) then
largest:=l
else
largest:=i;
if(r <= heapsize) and (A[r] > A[largest]) then
largest:=r;
(*Now we save the value i to check properly the termination
condition of repeat until loop
The value of i will be modified soon in the if statement *)
save:=i;
if largest <> i then
begin
temp:=A[i];
A[i]:=A[largest];
A[largest]:=temp;
i:=largest;
end;
until largest = save;
(*Why i used repeat until istead of while ?
because body of the called procedure will be executed
at least once *)
end;
另外一件事,在Wirth的算法+数据结构=程序中 可以找到没有递归的筛选程序,但我们应该引入布尔变量或break来消除goto语句