我试图使用以下策略对数据集进行分类:
以下是fisheriris数据集的代码:
load fisheriris
cur=meas;true_label=species;
for norm=0:2
feats=normalizamos(cur,norm); %this is just a function I use in my dataset
for normalization. norm=0 equals no normalization
norm=1 and norm=2 are two different normalizations
c=cvpartition(size(feats,1),'leaveout');
for k=[1,2,3,4,5,7,10,12,15,20]
clear n_erros
for i=1:c.NumTestSets
tr=c.training(i);te=c.test(i);
train_set=feats(tr,:);
test_set=feats(te,:);
train_class=true_label(tr);
test_class=true_label(te);
pred=knnclassify(test_set,train_set,train_class,k);
n_erros(i)=sum(~strcmp(pred,test_class));
end
err_rate=sum(n_erros)/sum(c.TestSize)
end
end
由于结果(对于我的数据集)显示出奇怪的不连贯值,我决定编写自己的LOO版本,如下所示:
for i=1:size(cur,1)
test_set=feats(i,:);
test_class=true_label(i);
if i==1
train_set=feats(i+1:end,:);
train_class=true_label(i+1:end);
else
train_set=[feats(1:i-1,:);feats(i+1:end,:)];
train_class=[true_label(1:i-1);true_label(i+1:end)];
end
pred=knnclassify(test_set,train_set,train_class,k);
n_erros(i)=sum(~strcmp(pred,test_class));
end
假设我的代码版本写得很好,我希望得到相同或至少相似的结果。以下是两种结果:
知道为什么结果如此不同?我应该使用什么版本? 现在我想改写我做的其他测试(3倍,5倍等等),以确保。
谢谢大家