我正在学习JavaScript,我发现了以下文章:http://www.html5code.nl/tutorial-canvas-animation-spiral-movement/
你能告诉我函数spiralMotion1()是如何工作的吗? 我想自定义速度和距离。
编辑:将其细分为具体细节:为什么要使用cos。和罪。为什么要使用rotationRadius? setAngle函数如何影响结果?度数变量在哪里发挥作用?
代码:
function spiralMotion1(){
var degrees = 0;
var Angle;
var rotationRadius=2;
var rotationRadiusIncrease = 1;
var ballRadius=20
var centerX;
var centerY;
var x;
var y;
var animate=true;
var breadcrumbs = new Array();
var crumbRadius=1;
var canvas = jQuery("#spiral_motion1");
var context = canvas.get(0).getContext("2d");
//function Ball(x,y,radius,color,strokeColor,lineWidth) in ball.js
var ball_3 = new Ball(-10,-10,20,'#f00','#000',7);
var parentWidth=jQuery(canvas).parent().width();
var canvasWidth=context.canvas.width = parentWidth;
var canvasHeight=context.canvas.height= 288;
if (!checkForCanvasSupport) {
return;
}
(function drawFrame() {
window.requestAnimationFrame(drawFrame, canvas);
if(animate){
context.clearRect(0,0,canvasWidth,canvasHeight); // clear canvas
//Make the Canvas element responsive for desktop, tablet and smartphone.
centerX = canvasWidth/2;
centerY = canvasHeight/2
Angle = degrees * (Math.PI / 180);
degrees = degrees + 1;
ball_3.x=rotationRadius * Math.cos(setAngle()) + centerX;
ball_3.y=rotationRadius * Math.sin(setAngle()) + centerY;
ball_3.draw(context);
//add a breadcrumb to the breadcrumbs array
breadcrumbs.push({x:ball_3.x,y:ball_3.y});
//draw the breadcrumbs that shows the track of the movement
context.globalCompositeOperation = "destination-over";
showBreadcrumbs(breadcrumbs);
rotationRadius += rotationRadiusIncrease/5
if ((ball_3.y + ballRadius+4) > canvas.height()){
animate=false;
}
}
}());//end drawFrame
function setAngle(){
Angle = degrees * (Math.PI / 180);
degrees = degrees + 2;
return Angle;
}//end setAngl()
function showBreadcrumbs(breadcrumbs){
for (var i = 0; i< breadcrumbs.length; i++) {
context.beginPath();
context.arc(breadcrumbs[i].x,breadcrumbs[i].y,crumbRadius,0, 2*Math.PI,false);
context.closePath();
context.fillStyle="#999";
context.fill();
}
}//end showBreadcrumbs()
}//end spiralMotion1()
答案 0 :(得分:1)
归结为基本几何。如果你想到一个在2D中绕一个点运行的物体,它的运动可以用半径(距离轨道点的距离)和一个时间函数的角度来表征。如果您知道半径和角度,那么您可以使用cos和sin函数计算身体位置。
通过随时间改变半径,您将获得螺旋而不是简单的圆圈。