我用Java编写了一个程序;它使用两种方法来求解线性方程组,我想计算每种方法的运行时间。
我发现当我改变两种方法的运行顺序时,我得到了不同的运行时间结果。
为什么?
/*using direct_method and Jacobi_method to resolve the linear equation,and compare each running time*/
public class Jacobi_iterat {
/*Jacobi part*/
/*find lower triangular matrix*/
private static float[][] find_lower(float data[][],int k){
int length=data.length;
float data2[][]=new float[length][length];
if(k>=0){
for(int i=0;i<=length-k-1;i++){
for(int j=0;j<=i+k;j++){
data2[i][j]=data[i][j];
}
}
for(int i=length-k;i<length;i++){
for(int j=0;j<length;j++){
data2[i][j]=data[i][j];
}
}
}
else{
for(int i=-k;i<length;i++){
for(int j=0;j<=i+k;j++){
data2[i][j]=data[i][j];
}
}
}
return data2;
}
/*negative of the matrix*/
private static float[][] opposite_matrix(float[][] data){
int M=data.length;
int N=data[0].length;
float data_temp[][]=new float[M][N];
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
data_temp[i][j]=-data[i][j];
}
}
return data_temp;
}
/*inverse matrix of the diagnal matrix*/
private static float[][] inv_diagnal(float[][] data){
int M=data.length;
int N=data[0].length;
float[][] data2=new float[M][N];
float fenzi=1;
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
if(i==j){
data2[i][j]=fenzi/data[i][j];
}
}
}
return data2;
}
/*upper triangular matrix*/
private static float[][] find_upper(float[][] data,int k){
int length=data.length;
int M=length-k;
float[][] data2=new float[length][length];
if(k>=0){
for(int i=0;i<M;i++){
for(int j=k;j<length;j++){
data2[i][j]=data[i][j];
}
k+=1;
}
}
else {
for(int i=0;i<-k;i++){
for(int j=0;j<length;j++){
data2[i][j]=data[i][j];
}
}
for(int i=-k;i<length;i++){
for(int j=i+k;j<length;j++){
data2[i][j]=data[i][j];
}
}
}
return data2;
}
/*add two matrix*/
private static float[][] matrix_add(float[][] data1,float[][] data2){
int M=data1.length;
int N=data1[0].length;
float data[][]=new float[M][N];
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
data[i][j]=data1[i][j]+data2[i][j];
}
}
return data;
}
private static float[] matrix_add2(float[] data1,float[] data2){
int M=data1.length;
float data[]=new float[M];
for(int i=0;i<M;i++){
data[i]=data1[i]+data2[i];
}
return data;
}
/*multiply two matrix*/
private static float[][] multiply(float[][] data1,float[][] data2){
int M=data1.length;
int N=data1[0].length;
int K=data2[0].length;
float[][] data3=new float[M][K];
for(int i=0;i<M;i++){
for(int j=0;j<K;j++){
for(int k=0;k<N;k++){
data3[i][j]+=data1[i][k]*data2[k][j];
}
}
}
return data3;
}
private static float[] multiply2(float[][] data1,float[] data2){
int M=data1.length;
int N=data1[0].length;
float[] data3=new float[M];
for(int k=0;k<M;k++){
for(int j=0;j<N;j++){
data3[k]+=data1[k][j]*data2[j];
}
}
return data3;
}
/*calculate the diagnal matrix */
private static float[][] find_diagnal(float A[][]) {
int m = A.length;
int n = A[0].length;
float B[][] = new float[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
B[i][j] = A[i][j];
}
}
}
return B;
}
/*Jacobi_method*/
private static float[] Jacobi_method(float[][] A,float[] B,float[] X){
float[][] D=find_diagnal(A);
float[][] inv_D=inv_diagnal(D);
float[][] opposite_D=opposite_matrix(inv_D);
float[][] L=find_lower(A, -1);
float[][] U=find_upper(A, 1);
float[][] Bo=multiply(opposite_D,matrix_add(L, U));
float[] F=multiply2(inv_D, B);
return matrix_add2(multiply2(Bo, X),F);
}
/*calculate the two norm between two vector*/
private static double cal_error(float[] X1,float[] X2){
int M=X1.length;
double temp=0;
for(int i=0;i<M;i++){
temp+=Math.pow((X1[i]-X2[i]),2);
}
temp=Math.sqrt(temp);
return temp;
}
/*end of Jacobi part*/
/*direct method part*/
private static float[] cal_direct(float[][] A,float[] B){
int M=A[0].length;
float X[]=new float[M];
float[][] inv_A=inv(A);
X=multiply2(inv_A, B);
return X;
}
/*transpose of the matrix*/
private static float [][]trans(float[][] data){
int i=data.length;
int j=data[0].length;
float[][] data2=new float[j][i];
for(int k2=0;k2<j;k2++){
for(int k1=0;k1<i;k1++){
data2[k2][k1]=data[k1][k2];
}
}
return data2;
}
/*calculate the ajoint matrix of the matrix*/
private static float[][] ajoint(float[][] data) {
int M=data.length;
int N=data[0].length;
float data2[][]=new float[M][N];
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
if((i+j)%2==0){
data2[i][j]=cal_det(get_complement(data, i, j));
}
else{
data2[i][j]=-cal_det(get_complement(data, i, j));
}
}
}
return trans(data2);
}
/*inverse of the matrix*/
private static float[][] inv(float [][] data){
int M=data.length;
int N=data[0].length;
float data2[][]=new float[M][N];
float det_val=cal_det(data);
data2=ajoint(data);
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
data2[i][j]=data2[i][j]/det_val;
}
}
return data2;
}
/* calculate the determinant of the matrix*/
private static float cal_det(float[][] data) {
float ans=0;
if(data[0].length==2){
ans=data[0][0]*data[1][1]-data[0][1]*data[1][0];
}
else{
for(int i=0;i<data[0].length;i++){
float[][] data_temp=get_complement(data, 0, i);
if(i%2==0){
ans=ans+data[0][i]*cal_det(data_temp);
}
else{
ans=ans-data[0][i]*cal_det(data_temp);
}
}
}
return ans;
}
private static float[][] get_complement(float[][] data, int i, int j) {
int x = data.length;
int y = data[0].length;
float data2[][] = new float[x - 1][y - 1];
for (int k = 0; k < x - 1; k++) {
if (k < i) {
for (int kk = 0; kk < y - 1; kk++) {
if (kk < j) {
data2[k][kk] = data[k][kk];
} else {
data2[k][kk] = data[k][kk + 1];
}
}
} else {
for (int kk = 0; kk < y - 1; kk++) {
if (kk < j) {
data2[k][kk] = data[k + 1][kk];
} else {
data2[k][kk] = data[k + 1][kk + 1];
}
}
}
}
return data2;
}
/*end of direct method part*/
public static void main(String args[]){
System.out.println("input the dimensions of the coefficient square:");
Scanner scan=new Scanner(System.in);
int M=scan.nextInt();
System.out.println("input the dimensions of the equation value vector:");
int K=scan.nextInt();
if(M!=K){
System.out.println("the number of equations and unknowns are not equal!");
System.exit(0);
}
System.out.println("input coefficient matrix:");
float[][] A=new float[M][M];
for(int i=0;i<M;i++){
for(int j=0;j<M;j++){
A[i][j]=scan.nextFloat();
}
}
System.out.println("input the value vector");
float[] B=new float[M];
for(int i=0;i<M;i++){
B[i]=scan.nextFloat();
}
System.out.println("input the initial iteration vector:");
float[] X=new float[M];
for(int i=0;i<M;i++){
X[i]=scan.nextFloat();
}
System.out.println("input the bound of error:");
float er=scan.nextFloat();
float temp[]=new float[M];
/*calculate the running time of two method,but I get the different running time result when I exchange the running order of two method, why?*/
/*calculate the running time of Jacobi_method*/
long startTime=System.nanoTime();
while(cal_error((temp=Jacobi_method(A, B, X)), X)>=er){
X=temp;
}
X=temp;
long endTime=System.nanoTime();
System.out.println("the solution vector of Jacobi_method is:");
for(int i=0;i<M;i++){
System.out.println(X[i]);
}
System.out.println("the running time of Jacobi_method is:");
System.out.println(endTime-startTime+"ns");
/*calculate the running time of direct_method*/
long startTime2=System.nanoTime();
X=cal_direct(A, B);
long endTime2=System.nanoTime();
System.out.println("the solution vector of direct_method is:");
for(int i=0;i<M;i++){
System.out.println(X[i]);
}
System.out.println("the running time of direct_method is:");
System.out.println(endTime2-startTime2+"ns");
}
}
答案 0 :(得分:1)
可能有很多原因。目前还不完全清楚你试图运行的功能,所以我会给你几个可能的原因:
一个函数可能会更频繁地调用方法并导致其内联。然后第二个函数可以用内联代码开始。
一个函数可能产生比另一个函数更多的垃圾,第二个函数将被GC延迟。
某些内联代码具有不同的分支预测统计信息,这会影响其他方法
在没有预热的情况下运行测试方法的时间很短,测量结果会淹没噪音。
使用可以隔离测试的基准测试框架可以避免这些(和其他)原因。查看例如JMH。
答案 1 :(得分:0)
有很多原因,但对我来说更合理的是你遇到java热点运行时优化。简而言之,java应用程序优化它们自己在代码路径上经常发生更快。因此,当您反转这两种方法时,优化不会完全以相同的方式完成。
在优化完成后测试(并且仅测试)您的时间的一种方法是在同一个应用程序运行中运行您的代码两次,唯一需要考虑的是第二次。
例如:
call method1
call method2
time call method1
time call method2