scikit-learn:用SVC建立学习曲线

时间:2014-09-26 11:16:17

标签: scikit-learn

我正在尝试使用SVC分类器绘制学习曲线。数据集有点偏斜,大小约为150,1000,1000,1000和150。我在拟合估算器方面遇到了问题:

  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/learning_curve.py", line 135, in learning_curve
    for train, test in cv for n_train_samples in train_sizes_abs)
  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 644, in __call__
    self.dispatch(function, args, kwargs)
  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 391, in dispatch
    job = ImmediateApply(func, args, kwargs)
  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 129, in __init__
    self.results = func(*args, **kwargs)
  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/cross_validation.py", line 1233, in _fit_and_score
    estimator.fit(X_train, y_train, **fit_params)
  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/svm/base.py", line 140, in fit
    X = atleast2d_or_csr(X, dtype=np.float64, order='C')
  File "/Users/carrier24sg/.virtualenvs/ml/lib/python2.7/site-packages/sklearn/svm/base.py", line 450, in _validate_targets
    % len(cls))
ValueError: The number of classes has to be greater than one; got 1

我的代码

  df = pd.read_csv('../resources/problem2_processed_validate.csv')
  data, label = preprocess_text(df)

  cv = StratifiedKFold(label, 10)
  plt = plot_learning_curve(estimator=SVC(), title="Learning curve", X=data, y=label.values, cv
  train_sizes, train_scores, test_scores = learning_curve(
    estimator, data, y=label, cv=cv, train_sizes=np.linspace(.1, 1.0, 5))

即使我使用分层抽样,我仍然遇到这个错误。我相信它是因为学习曲线代码在递增数据集大小时不执行分层,并且我在一步中获得了所有类似的类标签。

我该如何解决这个问题?

2 个答案:

答案 0 :(得分:3)

您可以使用StratifiedShuffleSplit代替StratifiedKFold,然后自己编写学习曲线循环,在每次迭代时创建一个新的CV对象。 StratifiedShuffleSplit允许您指定train_sizetest_size,您可以在创建学习曲线时增加train_size和{{1}}。只要你让{{1}}大于类的数量,它就能够分层。

答案 1 :(得分:0)

你是对的。 learning_curve在创建较小的数据集时不执行分层,它只占用数据的第一位。 learning_curve.py中的第134-136行说

train[:n_train_samples] for n_train_samples in train_sizes_abs

您可以提前对数据进行随机播放,以便切片train[:n_train_samples]可以(但不保证)包含来自所有类的数据点。如果你愿意做更多的工作,@ eickenberg提出的建议将会奏效。

PS这听起来应该包含在sklearn中。如果您最终编写该代码,请在github上发送拉取请求