基本上,我试图使用Matlab的interp1方法从图像分割中平滑轮廓线。不幸的是,interp1的行为并不像我预期的那样,可能是因为我使用不正确。我的插值代码如下:
y2 = interp1(x, y, 'nearest');
然后,我尝试将原始x值与原始函数一起绘制为y2(参见附图)。
plot(x, y2, 'x');
我认为插值会使原始函数平滑 - 在某种程度上,它实际上 - 但是,interp1方法似乎偏离原点并旋转。我希望这个结果与原始数据更加一致。任何指导都将不胜感激。
+------------------+------------------+
| y | x |
+------------------+------------------+
| 37.9838709677419 | 1 |
| 38 | 1.02500000000000 |
| 38.9750000000000 | 2 |
| 38.9935064935065 | 3.00000000000000 |
| 39 | 3.08333333333333 |
| 39.9166666666667 | 4 |
| 39.9935064935065 | 5.00000000000000 |
| 40 | 5.01562500000000 |
| 40.9843750000000 | 6 |
| 40.9928571428571 | 7 |
| 41 | 7.01388888888889 |
| 41.9861111111111 | 8 |
| 42 | 8.01388888888889 |
| 42.9861111111111 | 9 |
| 42.9966216216216 | 10 |
| 43 | 10.0055555555556 |
| 43.9944444444445 | 11.0000000000000 |
| 44 | 11.0384615384615 |
| 44.9615384615385 | 12 |
| 44.9948979591837 | 13 |
| 45 | 13.0555555555556 |
| 45.9444444444444 | 14 |
| 45.9848484848485 | 15 |
| 46 | 15.0333333333333 |
| 46.9666666666667 | 16 |
| 46.9916666666667 | 17 |
| 46.9939759036145 | 18 |
| 47 | 18.0357142857143 |
| 47.9642857142857 | 19 |
| 47.9861111111111 | 20 |
| 48 | 20.0098039215686 |
| 48.9901960784314 | 21.0000000000000 |
| 49 | 21.0074626865672 |
| 49.9925373134328 | 22 |
| 50 | 22.0076923076923 |
| 51 | 22.1000000000000 |
| 51.9000000000000 | 23 |
| 52 | 23.0500000000000 |
| 52.9500000000000 | 24.0000000000000 |
| 53 | 24.0161290322581 |
| 53.9838709677419 | 25 |
| 54 | 25.0217391304348 |
| 54.9782608695652 | 26 |
| 55 | 26.1666666666667 |
| 55.8333333333333 | 27 |
| 55.9886363636364 | 28 |
| 56 | 28.0087719298246 |
| 56.9912280701754 | 29 |
| 56.9935897435897 | 30 |
| 57 | 30.1000000000000 |
| 57.9000000000000 | 31.0000000000000 |
| 57.9722222222222 | 32 |
| 58 | 32.1250000000000 |
| 58.8750000000000 | 33 |
| 58.9782608695652 | 34 |
| 58.9687500000000 | 35 |
| 58.9883720930233 | 36.0000000000000 |
| 59 | 36.0833333333333 |
| 59.9166666666667 | 37 |
| 59.9736842105263 | 38 |
| 60 | 38.1000000000000 |
| 60.9000000000000 | 39 |
| 60.9750000000000 | 40 |
| 61 | 40.0113636363636 |
| 61.9886363636364 | 41 |
| 61.9883720930233 | 42 |
| 62 | 42.0714285714286 |
| 62.9285714285714 | 43 |
| 63 | 43.0357142857143 |
| 64 | 43.0714285714286 |
| 65 | 43.1000000000000 |
| 66 | 43.0833333333333 |
| 67 | 43.0833333333333 |
| 68 | 43.0625000000000 |
| 69 | 43.0384615384615 |
| 70 | 43.0166666666667 |
| 71 | 43.0106382978723 |
| 71.1666666666667 | 43 |
| 72 | 42.1666666666667 |
| 73 | 42.0833333333333 |
| 74 | 42.0625000000000 |
| 75 | 42.0625000000000 |
| 76 | 42.1666666666667 |
| 76.8333333333333 | 43 |
| 77 | 43.0142857142857 |
| 78 | 43.0277777777778 |
| 78.9722222222222 | 44 |
| 79 | 44.0064102564103 |
| 79.9935897435898 | 45 |
| 80 | 45.0277777777778 |
| 81 | 45.2500000000000 |
| 81.7500000000000 | 46 |
| 82 | 46.0833333333333 |
| 82.9166666666667 | 47.0000000000000 |
| 83 | 47.0166666666667 |
| 84 | 47.1250000000000 |
| 84.8750000000000 | 48 |
| 85 | 48.0131578947368 |
| 86 | 48.0714285714286 |
| 86.9285714285714 | 49 |
| 87 | 49.5000000000000 |
| 87.5000000000000 | 50 |
| 88 | 50.0714285714286 |
| 88.9285714285714 | 51.0000000000000 |
| 89 | 51.0178571428571 |
| 89.9821428571429 | 52 |
| 89.9583333333333 | 99 |
| 89.9923076923077 | 100 |
| 89.9938271604938 | 101 |
| 89.9666666666667 | 102 |
| 89.9375000000000 | 103 |
| 90 | 52.0106382978723 |
| 90.9893617021277 | 53 |
| 90.9750000000000 | 85 |
| 90.9915254237288 | 86 |
| 90.9871794871795 | 87 |
| 90.9687500000000 | 88 |
| 90.9583333333333 | 89 |
| 90.9935064935065 | 90 |
| 90.9937500000000 | 91 |
| 90.9807692307692 | 92 |
| 90.9687500000000 | 93 |
| 90.9827586206897 | 94 |
| 90.9814814814815 | 95 |
| 90.9500000000000 | 96.0000000000000 |
| 90.9687500000000 | 97 |
| 90 | 98.9444444444444 |
| 90.9444444444444 | 98 |
| 90 | 103.062500000000 |
| 90.9375000000000 | 104 |
| 90.8333333333333 | 105 |
| 91 | 53.0166666666667 |
| 91.9833333333333 | 54.0000000000000 |
| 91.9687500000000 | 75 |
| 91.9545454545455 | 77 |
| 91.9642857142857 | 78.0000000000000 |
| 91.9444444444444 | 79 |
| 91.8333333333333 | 80 |
| 91.9166666666667 | 81 |
| 91.9000000000000 | 82 |
| 91.5000000000000 | 83 |
| 91 | 84.7500000000000 |
| 91.7500000000000 | 84 |
| 91 | 105.100000000000 |
| 91.9000000000000 | 106 |
| 91.9615384615385 | 107 |
| 91.9500000000000 | 124 |
| 91.9000000000000 | 125 |
| 91.7500000000000 | 126 |
| 91.8750000000000 | 127 |
| 91.9000000000000 | 128 |
| 91.8750000000000 | 129 |
| 92 | 54.0294117647059 |
| 92.9705882352941 | 55 |
| 92.9910714285714 | 56 |
| 92 | 74.9687500000000 |
| 92.9687500000000 | 74 |
| 92 | 75.0416666666667 |
| 92 | 76.9583333333333 |
| 92.9583333333333 | 76.0000000000000 |
| 92 | 107.125000000000 |
| 92.8750000000000 | 108 |
| 92.9687500000000 | 109 |
| 92.9500000000000 | 122.000000000000 |
| 92 | 123.875000000000 |
| 92.8750000000000 | 123 |
| 92 | 129.125000000000 |
| 92.8750000000000 | 130 |
| 93 | 56.0125000000000 |
| 93.9750000000000 | 69.0000000000000 |
| 93.9838709677419 | 70 |
| 93.9761904761905 | 71 |
| 93.9761904761905 | 72.0000000000000 |
| 93 | 73.9500000000000 |
| 93.9500000000000 | 73 |
| 93 | 109.071428571429 |
| 93.9285714285714 | 110.000000000000 |
| 93 | 121.968750000000 |
| 93.9687500000000 | 121 |
| 93 | 130.083333333333 |
| 93.9166666666667 | 131 |
| 94 | 56.0625000000000 |
| 94.9375000000000 | 57 |
| 94.9838709677419 | 58 |
| 94.9864864864865 | 59 |
| 94.9893617021277 | 66 |
| 94.9722222222222 | 67 |
| 94.0000000000000 | 68.9833333333333 |
| 94.9833333333333 | 68 |
| 94 | 110.062500000000 |
| 94.9375000000000 | 111 |
| 94.9861111111111 | 112.000000000000 |
| 94.9861111111111 | 115.000000000000 |
| 94.9933333333333 | 119 |
| 94 | 120.980769230769 |
| 94.9807692307692 | 120 |
| 94 | 131.012820512821 |
| 94.9871794871795 | 132 |
| 95 | 59.0384615384615 |
| 95.9615384615385 | 60 |
| 95.9807692307692 | 61.0000000000000 |
| 95.9722222222222 | 62 |
| 95.9838709677419 | 63 |
| 95.9852941176471 | 64 |
| 95 | 65.9583333333333 |
| 95.9583333333333 | 65 |
| 95 | 112.026315789474 |
| 95.9736842105263 | 113 |
| 95 | 114.994252873563 |
| 95.9942528735632 | 114 |
| 95 | 115.015151515152 |
| 95.9848484848485 | 116 |
| 95.9893617021277 | 117.000000000000 |
| 95 | 118.982142857143 |
| 95.9821428571429 | 118 |
| 95 | 132.014705882353 |
| 95.9852941176471 | 133.000000000000 |
| 95.9954545454546 | 134 |
| 96 | 134.014285714286 |
| 96.9857142857143 | 135 |
| 97 | 135.022727272727 |
| 97.9772727272727 | 136 |
| 98 | 136.021739130435 |
| 98.9782608695652 | 137 |
| 99 | 137.038461538462 |
| 99.9615384615385 | 138.000000000000 |
| 100 | 138.022727272727 |
| 100.977272727273 | 139 |
| 101 | 139.041666666667 |
+------------------+------------------+
答案 0 :(得分:1)
您的代码几乎没有问题
首先,我认为您错误地使用了interp1
函数。在您使用它时,该函数会在x
指定的点处插入y
,假设{1,2}在1,2,3,......上采样{
1
查看interp1文档
我认为你试图做的是在1,2,3,...
插入y
如果我是正确的,那么语法应该是(但它不会像我稍后解释的那样工作)
x
这让我想到了另外两个问题
您的网格点不是单调增加的,也不是唯一的
第一个问题可以通过使用x2 = 1:max(round(x));
y2 = interp1(x, y,x2 , 'nearest');
plot(x2,y2,'x');
:
sort
第二个可以用[x,ind] = sort(x);
y = y(ind);
来解决(但这不一定是你想要的那样):
unique
最后,您可以按照我上面的建议进行插值。
顺便说一句:还有其他方法可以去除数据中的大驼峰"或者"将其平滑",例如过滤(线性和非线性)。