嗨,
我试图在OpenCL中运行可用的卷积代码
我正在使用异构系统 -
1)CPU
2)GPU
PFB我在我的系统中运行的代码库:
// TODO: Add OpenCL kernel code here.
__kernel
void convolve(
const __global uint * const input,
__constant uint * const mask,
__global uint * const output,
const int inputWidth,
const int maskWidth){
const int x = get_global_id(0);
const int y = get_global_id(1);
uint sum = 0;
for (int r = 0; r < maskWidth; r++)
{
const int idxIntmp = (y + r) * inputWidth + x;
for (int c = 0; c < maskWidth; c++)
{
sum += mask[(r * maskWidth) + c] * input[idxIntmp + c];
}
}
output[y * get_global_size(0) + x] = sum;
}
和convolution.cpp -
//卷积 - 将3×3掩模应用于8×8输入信号的过程,产生6×6输出信号
#include "CL/cl.h"
#include "vector"
#include "iostream"
#include "time.h"
#include <fstream>
#include <sstream>
#include <string>
using namespace std;
// Constants
const unsigned int inputSignalWidth = 8;
const unsigned int inputSignalHeight = 8;
cl_uint inputSignal[inputSignalWidth][inputSignalHeight] =
{
{3, 1, 1, 4, 8, 2, 1, 3},
{4, 2, 1, 1, 2, 1, 2, 3},
{4, 4, 4, 4, 3, 2, 2, 2},
{9, 8, 3, 8, 9, 0, 0, 0},
{9, 3, 3, 9, 0, 0, 0, 0},
{0, 9, 0, 8, 0, 0, 0, 0},
{3, 0, 8, 8, 9, 4, 4, 4},
{5, 9, 8, 1, 8, 1, 1, 1}
};
const unsigned int outputSignalWidth = 6;
const unsigned int outputSignalHeight = 6;
cl_uint outputSignal[outputSignalWidth][outputSignalHeight];
const unsigned int maskWidth = 3;
const unsigned int maskHeight = 3;
cl_uint mask[maskWidth][maskHeight] =
{
{1, 1, 1},
{1, 0, 1},
{1, 1, 1},
};
inline void checkErr(cl_int err, const char * name)
{
if (err != CL_SUCCESS)
{
std::cerr << "ERROR: " << name
<< " (" << err << ")" << std::endl;
exit(EXIT_FAILURE);
}
}
void CL_CALLBACK contextCallback(
const char * errInfo,
const void * private_info,
size_t cb,
void * user_data)
{
std::cout << "Error occurred during context use: "<< errInfo << std::endl;
exit(EXIT_FAILURE);
}
int main(int argc,char argv[]){
cl_int errNum;
cl_uint numPlatforms;
cl_uint numDevices;
cl_platform_id * platformIDs;
cl_device_id * deviceIDs;
cl_context context = NULL;
cl_command_queue queue;
cl_program program;
cl_kernel kernel;
cl_mem inputSignalBuffer;
cl_mem outputSignalBuffer;
cl_mem maskBuffer;
double start,end,Totaltime;//Timer variables
errNum = clGetPlatformIDs(0, NULL, &numPlatforms);
checkErr(
(errNum != CL_SUCCESS) ? errNum :
(numPlatforms <= 0 ? -1 : CL_SUCCESS),
"clGetPlatformIDs");
platformIDs = (cl_platform_id *)malloc(sizeof(cl_platform_id) * numPlatforms);
errNum = clGetPlatformIDs(numPlatforms, platformIDs, NULL);
checkErr(
(errNum != CL_SUCCESS) ? errNum :
(numPlatforms <= 0 ? -1 : CL_SUCCESS), "clGetPlatformIDs");
deviceIDs = NULL;
cl_uint i;
for (i = 0; i < numPlatforms; i++)
{
errNum = clGetDeviceIDs(
platformIDs[i],
CL_DEVICE_TYPE_GPU,
0,
NULL,
&numDevices);
if (errNum != CL_SUCCESS && errNum != CL_DEVICE_NOT_FOUND)
{
checkErr(errNum, "clGetDeviceIDs");
}
else if (numDevices > 0)
{
deviceIDs = (cl_device_id *)malloc(
sizeof(cl_device_id) * numDevices);
errNum = clGetDeviceIDs(
platformIDs[i],
CL_DEVICE_TYPE_GPU,
numDevices,
&deviceIDs[0],
NULL);
checkErr(errNum, "clGetDeviceIDs");
break;
}
}
if (deviceIDs == NULL) {
std::cout << "No CPU device found" << std::endl;
exit(-1);
}
cl_context_properties contextProperties[] =
{
CL_CONTEXT_PLATFORM,(cl_context_properties)platformIDs[i], 0
};
context = clCreateContext(
contextProperties, numDevices, deviceIDs,
&contextCallback, NULL, &errNum);
checkErr(errNum, "clCreateContext");
std::ifstream srcFile("convolution.cl");
checkErr(srcFile.is_open() ? CL_SUCCESS : -1,
"reading convolution.cl");
std::string srcProg(
std::istreambuf_iterator<char>(srcFile),
(std::istreambuf_iterator<char>()));
const char * src = srcProg.c_str();
size_t length = srcProg.length();
program = clCreateProgramWithSource(context, 1, &src, &length, &errNum);
checkErr(errNum, "clCreateProgramWithSource");
errNum = clBuildProgram(program, numDevices, deviceIDs, NULL, NULL, NULL);
checkErr(errNum, "clBuildProgram");
kernel = clCreateKernel(program, "convolve", &errNum);
checkErr(errNum, "clCreateKernel");
inputSignalBuffer = clCreateBuffer(
context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * inputSignalHeight * inputSignalWidth,
static_cast<void *>(inputSignal), &errNum);
checkErr(errNum, "clCreateBuffer(inputSignal)");
maskBuffer = clCreateBuffer(
context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * maskHeight * maskWidth,
static_cast<void *>(mask), &errNum);
checkErr(errNum, "clCreateBuffer(mask)");
outputSignalBuffer = clCreateBuffer(
context, CL_MEM_WRITE_ONLY,
sizeof(cl_uint) * outputSignalHeight * outputSignalWidth,
NULL, &errNum);
checkErr(errNum, "clCreateBuffer(outputSignal)");
queue = clCreateCommandQueue(
context, deviceIDs[0], 0, &errNum);
checkErr(errNum, "clCreateCommandQueue");
errNum = clSetKernelArg(
kernel, 0, sizeof(cl_mem), &inputSignalBuffer);
errNum |= clSetKernelArg(
kernel, 1, sizeof(cl_mem), &maskBuffer);
errNum |= clSetKernelArg(
kernel, 2, sizeof(cl_mem), &outputSignalBuffer);
errNum |= clSetKernelArg(
kernel, 3, sizeof(cl_uint), &inputSignalWidth);
errNum |= clSetKernelArg(
kernel, 4, sizeof(cl_uint), &maskWidth);
checkErr(errNum, "clSetKernelArg");
const size_t globalWorkSize[1] ={ outputSignalWidth * outputSignalHeight };
const size_t localWorkSize[1] = { 1 };
start = clock();
errNum = clEnqueueNDRangeKernel(
queue,
kernel,
1,
NULL,
globalWorkSize,
localWorkSize,
0,
NULL,
NULL
);
checkErr(errNum, "clEnqueueNDRangeKernel");
errNum = clEnqueueReadBuffer(
queue, outputSignalBuffer, CL_TRUE, 0,
sizeof(cl_uint) * outputSignalHeight * outputSignalHeight,
outputSignal, 0, NULL, NULL);
checkErr(errNum, "clEnqueueReadBuffer");
end= clock(); - start;
cout<<"Time in ms = "<<((end/CLOCKS_PER_SEC) * 1000) << endl;
for (int y = 0; y < outputSignalHeight; y++)
{
for (int x = 0; x < outputSignalWidth; x++)
{
std::cout << outputSignal[x][y] << " ";
}
std::cout << std::endl;
}
return 0;
}
问题:
我有点疑惑 -
1)当我使用设备类型为CL_DEVICE_TYPE_GPU时,
我的性能提高了267毫秒。当我使用CL_DEVICE_TYPE_CPU时,执行时间变为467毫秒。
我想知道在没有GPU的CPU和CPU与GPU上运行卷积代码之间的区别是什么(通过选择设备类型为CL_DEVICE_TYPE_CPU)。
2)我可以看到convolution.cl文件,其中有一个执行3次的for循环。我可以调用其他内核从可用的内核文件中执行此操作吗?
我问这个问题,因为我是OpenCL编码的新手,想知道那件事。
答案 0 :(得分:5)
CPU&amp; GPU是OpenCL设备。因此,通过选择CL_DEVICE_TYPE_CPU,您告诉OpenCL运行时将内核代码编译为CPU汇编程序&amp;在CPU上运行它。当您选择CL_DEVICE_TYPE_GPU时,内核代码将编译为GPU汇编程序&amp;在您的视频卡上执行。能够在不重写源代码的情况下更改设备类型是OpenCL的主要功能。没关系,你的CPU是否集成了GPU,和/或安装了独立的GPU,你只需选择可用的Device&amp;在其上运行内核。
对于OpenCL 1.2&amp;你不能从内核调用内核。动态并行性在OpenCL 2.0中实现。
答案 1 :(得分:2)
对于第一个问题:您应该对内核进行矢量化,以便opencl可以轻松使用CPU的SIMD功能,从而为每个内核解锁4x(或8x)个计算单元。
__kernel
void convolve(
const __global uint8 * const input, // uint8 fits AVX(AVX2?) and uint4 fits SSE(SSE3?)
__constant uint8 * const mask,
__global uint8 * const output,
const int inputWidth,
const int maskWidth){
const int x = get_global_id(0); // this is 1/8 size now
const int y = get_global_id(1); // this is 1/8 size now
uint8 sum = 0; // a vector of 8 unsigneds
for (int r = 0; r < maskWidth; r++)
{
const int idxIntmp = (y + r) * inputWidth + x;
for (int c = 0; c < maskWidth; c++)
{
sum += mask[(r * maskWidth) + c] * input[idxIntmp + c]; //8 issued per clock
// scalars get promoted when used in direct multiplication of addition.
}
}
output[y * get_global_size(0) + x] = sum;
}
不要忘记将总工作线程减少7/8比例(例如:从8k线程减少到1k线程)。 请增加每个线程的工作,例如每个线程50个卷积,以增加工作单元的占用率,然后进行一些本地内存优化(对于GPU)以获得更好的结果,例如每个内核5ms ......
在我支持AVX的CPU上,一个简单的矩阵乘法得到的速度比为2.4倍,就像这样的8元素矢量化。
如果你卸载了足够多的工作,运行内核3次不是问题。如果没有,你应该使用一些棘手的算法将多个内核连接成一个内核。
如果此刻无法使用探查器,您可以检查GPU / CPU温度,以了解您与硬件限制的接近程度。
使用每个工作组的本地线程数。这可以改变性能,因为它允许每个线程使用更多或更少的寄存器。