合并排序最有效的实现

时间:2014-09-17 05:07:56

标签: java algorithm sorting mergesort

所以我想知道Java中合并排序的最有效实现是什么(如果它的时间效率可以根据语言而改变)。这个问题可能微不足道,但我的最终目标是向更有经验的程序员学习。以下是我做的两个例子:

//version I made.
public static double[] mergeSort(double[] arreglo) {
    if (arreglo.length > 1) {
        int d = (arreglo.length / 2);
        double[] arreglo1 = Arrays.copyOfRange(arreglo, 0, d),
                arreglo2 = Arrays.copyOfRange(arreglo, d, arreglo.length);
        arreglo1 = mergeSort(arreglo1);
        arreglo2 = mergeSort(arreglo2);
        return merge(arreglo1, arreglo2);
    } else {
        return arreglo;
    }
}

public static double[] merge(double[] arreglo1, double[] arreglo2) {
    double[] convi = new double[arreglo1.length + arreglo2.length];
    for (int i = 0, m1 = 0, m2 = 0; i < convi.length; i++) {
        if (arreglo1.length > m1 && arreglo2.length > m2) {
            if (arreglo1[m1] <= arreglo2[m2])
                convi[i] = arreglo1[m1++];
            else {
                convi[i] = arreglo2[m2++];
            }
        } else {
            convi[i] = (arreglo1.length == m1) ? arreglo2[m2++] : arreglo1[m1++];
        }
    }
    return convi;
}

//Taken out of Cormens book.
public static void mergeSort(int[] arreglo, int i, int f) {
    if (f > i) {
        int d = ((i + f) / 2);
        mergeSort(arreglo, i, d);
        mergeSort(arreglo, d + 1, f);
        merge(arreglo, i, d, f);
    }
}


public static void merge(int[] arreglo, int i, int m, int f) {
    int n1 = (m - i) + 1;
    int n2 = (f - m);
    int[] mitad1 = new int[n1 + 1];
    int[] mitad2 = new int[n2 + 1];
    for (int v = 0; v < n1; v++) {
        mitad1[v] = arreglo[i + v];
    }
    for (int p = 0; p < n2; p++) {
        mitad2[p] = arreglo[p + m + 1];
    }
    mitad1[n1] = Integer.MAX_VALUE;
    mitad2[n2] = Integer.MAX_VALUE;
    for (int r = i, m1 = 0, m2 = 0; r <= f; r++) {
        if (mitad1[m1] <= mitad2[m2]) {
            arreglo[r] = mitad1[m1];
            m1++;
        } else {
            arreglo[r] = mitad2[m2];
            m2++;
        }
    }
}

2 个答案:

答案 0 :(得分:2)

第二个效率要高得多,因为它避免了所有的复制步骤。它也是一百万倍的简单和明显,它有自己的价值,

答案 1 :(得分:1)

以下程序是从Robert Sedgewick's Algorithms in C++, Parts 1-4

中给出的C ++示例翻译而来的

它引入了一种改进。它将整个排序数组的单个副本放入一个进一步处理的辅助数组中。接下来,通过在辅助阵列和原始阵列之间交替,在辅助阵列上完成递归分割,从而不会发生合并阵列的额外复制操作。基本上,算法在每次递归调用中切换输入和辅助数组的角色。例如,概念上:

常规合并:

- 合并

(((8) (5))((2) (3)))(((1) (7))((4) (6)))

(( 5 8 )( 2 3 ))(( 1 7 )( 4 6 ))

-- copy back and ignore previous (UNNECESSARY)

(( 5 8 )( 2 3 ))(( 1 7 )( 4 6 ))

- - - - - - - -

这个程序:

- 合并

(((8) (5))((2) (3)))(((1) (7))((4) (6)))

(( 5 8 )( 2 3 ))(( 1 7 )( 4 6 ))

- 向后合并

( 2 3 5 8 )( 1 4 6 7 )

(( 5 8 )( 2 3 ))(( 1 7 )( 4 6 ))    

此外,在将数组拆分为两半后,该算法会使用insertion sort,因为它在小数据集上的表现优于merge sort。准确使用insertion sort的时间阈值可以通过反复试验确定。

代码:

static int M = 10;

//insertion sort to be used once the mergesort partitions become small enough
static void insertionsort(int[] a, int l, int r) {
    int i, j, temp;
    for (i = 1; i < r + 1; i++) {
        temp = a[i];
        j = i;
        while ((j > 0) && a[j - 1] > temp) 
        {
            a[j] = a[j - 1];
            j = j - 1;
        }
        a[j] = temp;
    }
}

//standard merging two sorted half arrays into single sorted array
static void merge(int[] merged_a, int start_a, int[] half_a1, int start_a1, int size_a1, 
                         int[] half_a2, int start_a2, int size_a2) {
    int i, j, k;
    int total_s = size_a1 + size_a2;
    for (i = start_a1, j = start_a2, k = start_a; k < (total_s); k++) {
        // if reached end of first half array, run through the loop 
        // filling in only from the second half array
        if (i == size_a1) {
            merged_a[k] = half_a2[j++];
            continue;
        }
        // if reached end of second half array, run through the loop 
        // filling in only from the first half array
        if (j == size_a2) {
            merged_a[k] = half_a1[i++];
            continue;
        }
        // merged array is filled with the smaller element of the two 
        // arrays, in order
        merged_a[k] = half_a1[i] < half_a2[j] ?
                      half_a1[i++] : half_a2[j++];
    }
}

//merge sort data during merging without the additional copying back to array
//all data movement is done during the course of the merges
static void mergesortNoCopy(int[] a, int[] b, int l, int r) {
    if (r - l <= M) {
        insertionsort(a + l, l, r - l);
        return;
    }
    int m = (l + r) / 2;
    //switch arrays to msort b thus recursively writing results to b
    mergesortNoCopy(b, a, l, m); //merge sort left
    mergesortNoCopy(b, a, m + 1, r); //merge sort right
    //merge partitions of b into a
    merge(a, l, b, l, m - l + 1, b, m + 1, r - m); //merge
}

static void mergesort(int[] a) {
    int[] aux = Arrays.copyOf(a, a.length);
    mergesortNoCopy(a, aux, 0, a.length - 1);
}

其他一些可能的改进:

如果已经排序则停止。

检查上半场中最大项目是否是下半场最小项目。 帮助部分排序的数组。

// after split, before merge
if (a[mid] <= a[mid + 1]) return;

编辑:这是我在不同版本的Mergesort上发现的good document及其改进。