适用的变压器类

时间:2014-09-12 00:54:07

标签: haskell monad-transformers applicative

Applicative变压器类在哪里?我想为applicative transformer stack in a previous answer使用变换器类,但它们似乎不存在。

即使基础结构不是Applicativetransformers包和许多其他包都会包含保留Monad结构的变换器。

快速浏览transformers大多数变形金刚都有Applicative个实例。

Applicative f => Applicative (Backwards f)
Applicative f => Applicative (Lift f)
Applicative (ContT r m)
Applicative m => Applicative (IdentityT m)
Applicative m => Applicative (ReaderT r m)
(Monoid w, Applicative m) => Applicative (WriterT w m)
(Applicative f, Applicative g) => Applicative (Compose f g)
(Applicative f, Applicative g) => Applicative (Product f g)

只有状态和替换的变换器(ExceptTMaybeT)才需要Applicative实例的基础monad。

(Functor m, Monad m) => Applicative (ExceptT e m)
(Functor m, Monad m) => Applicative (MaybeT m)
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m)
(Functor m, Monad m) => Applicative (StateT s m)

Monad变形金刚的课程。我可以看到某些东西可能需要这个Monad约束,因为它不能在其他地方引入。

class MonadTrans t where
    lift :: (Monad m) => m a -> t m a

Applicative变形金刚的课程在哪里?

class ApTrans t where
    liftAp :: (Applicative f) => f a -> t f a

或者只是普通的旧变形金刚(虽然我无法想象有任何法律规定)?

class Trans t where
    liftAny :: f a -> t f a

由于仅在多态约束方面存在差异,因此这些类型类具有奇怪的方差模式。除了必须考虑无法解决约束的法律之外,任何Trans实例的内容都应自动成为ApTransMonadTrans的实例,以及{{1}的实例应该自动成为ApTrans的实例。

如果我们转到mtl库,那里的类也与MonadTrans变换器堆栈不兼容。我熟悉的所有mtl类都有Applicative约束。例如,这里是Monad

MonadReader

class Monad m => MonadReader r m | m -> r where -- | Retrieves the monad environment. ask :: m r ask = reader id -- | Executes a computation in a modified environment. local :: (r -> r) -- ^ The function to modify the environment. -> m a -- ^ @Reader@ to run in the modified environment. -> m a -- | Retrieves a function of the current environment. reader :: (r -> a) -- ^ The selector function to apply to the environment. -> m a reader f = do r <- ask return (f r) 约束的目的是什么?它使许多上述变换器的MonadMonadReader实例与MonadReader变换器堆栈不兼容。

我会天真地写出像

这样的东西
Applicative

甚至将class Reader r m | m -> r where ask :: m r local :: (r -> r) -> m a -> m a 拆分为单独的类。

local
没有class Reader r m | m -> r where ask :: m r class (Reader r m) => Local r m | m -> r where local :: (r -> r) -> m a -> m a 实例,

local可能很难使用。没有Monad约束的更有用的接口将类似于

Monad

是否存在没有class (Reader r m) => Local r m | m -> r where local :: m (r -> r) -> m a -> m a 约束的现有变换器类,或者是否真的需要另一个变换器类库?

2 个答案:

答案 0 :(得分:9)

与Monads不同,申请人在产品和作品下关闭,因此不需要特殊类别的东西,如变形金刚&#34;。这是一个小型图书馆:

data (*) f g x = P (f x) (g x)     deriving Functor
data C   f g x = C (f (g x))       deriving Functor

instance (Applicative f, Applicative g) => Applicative (f * g) where
  pure a = P (pure a) (pure a)
  P ff gf <*> P fx gx = P (ff <*> fx) (gf <*> gx)

instance (Applicative f, Applicative g) => Applicative (C f g) where
  pure = C . pure . pure
  C fgf <*> C fgx = C (liftA2 (<*>) fgf fgx)

此外,所有monad 都是 Applicatives所以我们应该能够重用该代码。遗憾的是,缺少Applicative-Monad子类型会使monadic代码更加排斥,而不是需要这样的代码。如果所有这些库都要求(Applicative m, Monad m)约束,它本可以纠正,但它们不会。此外,考虑到你可能不得不写的频率

(MonadReader m, Monad m) => ...

Monad超类约束很方便。但我不确定它是否完全必要。

答案 1 :(得分:5)

正如J. Abrahamson所说,应用程序在产品和组成下是封闭的,因此不需要专用的变压器版本。但是,也没有必要推出自己的Applicative产品/组合类型,因为平台已经有这些:

我发现更简单的方法是使用GeneralizedNewtypeDeriving扩展名,因为这样你就可以定义类似这样的类型:

newtype MyType m a = MyType (Compose (Const m) (Reader m) a)
    deriving (Functor, Applicative)

-- Plus a bunch of utility definitions to hide the use of Compose and generally
-- keep you sane...

Applicative工具集中另一个有用的工具是免费的applicative functor。我通常使用Edward Kmett's free library's version,但如果您想要更少的依赖项,则可以轻松自行推送。

这些定义也很有用(虽然我欢迎有关命名方案的建议,特别是“I / O”位):

{-# LANGUAGE Rank2Types, TypeOperators #-}

import Control.Applicative
import Data.Functor.Compose

-- | A handy infix type synonym for 'Compose', which allows us to
-- stack 'Applicative's with less syntactic noise:
-- 
-- > type CalculationT s p f = Reader (Frame s p) :. Reader (Cell s p) :. f
-- > type Calculation s p = Calculation s p Identity
--
-- Note that 'Identity' and ':.' form something a type-level monoid
-- modulo @newtype@ equivalence.  The following isomorphisms hold:
--
-- > f :. Identity  ~=  Identity :. f  ~=  f
-- > f :. g :. h  ~=  (f :. g) :. h 
--
type f :. g = Compose f g
infixr :.

-- | Lift an action from the outer functor into the composite.
-- Alternative reading: append an 'Applicative' to the right of @f@.
liftO :: (Functor f, Applicative g) => f a -> (f :. g) a
liftO = Compose . fmap pure

-- | Lift an action from the inner functor into the composite.
-- Alternative reading: prepend an 'Applicative' to the left of @g@.
liftI :: Applicative f => g a -> (f :. g) a
liftI = Compose . pure

-- | Lift a natural transformation from @g@ to @h@ into a morphism
-- from @f :. g@ to @h :. g@.
hoistO :: (forall x. f x -> h x) -> (f :. g) a -> (h :. g) a
hoistO eta = Compose . eta . getCompose

-- | Lift a natural transformation from @g@ to @h@ into a morphism
-- from @f :. g@ to @f :. h@.
hoistI :: Functor f => (forall x. g x -> h x) -> (f :. g) a -> (f :. h) a
hoistI eta = Compose . fmap eta . getCompose