具有自定义中断的gplot热图 - 不可预测的输出

时间:2014-09-08 15:03:24

标签: r heatmap gplots

我正在使用heatmap.2来热映射我的数据。我的数据由数值介于70和100之间的矩阵组成(表示样本之间的相似性),我想定义没有渐变颜色的清除障碍。

library(gplots)
library(RColorBrewer)
#defining my colors
mypal <- brewer.pal(n = 6, name = "Spectral")
#defining the breaks as per ?heatmap.2
breaks <- c(0,75.0,78.5,82.0,86.5,94.5,100)

heatmap.2(m,
              Rowv=TRUE,
              Colv="Rowv",
              density.info="histogram", 
              trace="none",     
              labCol=FALSE,
              labRow=FALSE,
              key.title=NA,
              key.ylab=NA,
              keysize=2,
              col=mypal,      
              breaks=breaks,   
              dendrogram="row")

我用三个不同的输入矩阵做了这个,每次省略其中一个断点。我无法弄清楚为什么。这是一张图片:

http://s29.postimg.org/j3561w3uv/Keys.png

我为六个类定义了6种颜色,但忽略了一种颜色。前三次休息看似大小相同(他们不应该这样)。此外,直方图不遵循关键图表中的颜色中断,并且x轴缩放始终不同。

我在哪里失败?

谢谢!

这是一个从我的数据中获得的随机子矩阵:

structure(c(100, 96.7, 95.8, 94.8, 95.9, 94.3, 93.6, 94, 93.1, 
91.9, 93.7, 91.8, 92, 91, 96.7, 100, 97.3, 95.6, 97.7, 95, 93.4, 
94.2, 93.3, 92.5, 93.2, 91.3, 92.3, 91.3, 95.8, 97.3, 100, 95.2, 
97, 94, 92, 92.6, 91.7, 90.8, 93, 91.2, 91.8, 91.3, 94.8, 95.6, 
95.2, 100, 95.9, 95, 91.5, 92.2, 91.8, 90.9, 93.9, 92.3, 93.4, 
92.7, 95.9, 97.7, 97, 95.9, 100, 95.4, 92.6, 93.7, 92.1, 92.1, 
92.8, 91.1, 91.8, 91.4, 94.3, 95, 94, 95, 95.4, 100, 91.4, 92.2, 
92.1, 91.3, 92.9, 91.2, 92.1, 91.5, 93.6, 93.4, 92, 91.5, 92.6, 
91.4, 100, 97.1, 95.8, 94.5, 90.8, 89.3, 90.5, 90.7, 94, 94.2, 
92.6, 92.2, 93.7, 92.2, 97.1, 100, 96, 94.3, 91.9, 90.6, 91.7, 
92.2, 93.1, 93.3, 91.7, 91.8, 92.1, 92.1, 95.8, 96, 100, 94.8, 
91.5, 91.1, 90.7, 90.9, 91.9, 92.5, 90.8, 90.9, 92.1, 91.3, 94.5, 
94.3, 94.8, 100, 89.4, 88.7, 89.9, 90.3, 93.7, 93.2, 93, 93.9, 
92.8, 92.9, 90.8, 91.9, 91.5, 89.4, 100, 95, 94, 93.4, 91.8, 
91.3, 91.2, 92.3, 91.1, 91.2, 89.3, 90.6, 91.1, 88.7, 95, 100, 
92.2, 92.6, 92, 92.3, 91.8, 93.4, 91.8, 92.1, 90.5, 91.7, 90.7, 
89.9, 94, 92.2, 100, 93.2, 91, 91.3, 91.3, 92.7, 91.4, 91.5, 
90.7, 92.2, 90.9, 90.3, 93.4, 92.6, 93.2, 100), .Dim = c(14L, 
14L), .Dimnames = list(c("A", "B", "C", "D", "E", "F", "G", "H", 
"I", "J", "K", "L", "M", "N"), (c("A", "B", "C", "D", "E", "F", "G", "H", 
"I", "J", "K", "L", "M", "N")))

从这一点来看,如果相关数据高于某个丰度阈值,那么关键似乎只代表一个突破。我尝试了新的任意休息:

breaks2 <- c(0,89.0,91.5,93.0,95.5,97.5,100)
png("test.png", height=1000, width=1000, res = 300, pointsize = 8)
heatmap.2(mat_data_test,
          main = "SG3",
          Rowv=TRUE,
          Colv="Rowv",
          density.info="density", 
          trace="none",     
          labCol=FALSE,
          labRow=FALSE,
          key.title=NA,
          key.ylab=NA,
          keysize=2,
          col=mypal,      
          breaks=breaks2,   
          dendrogram="row")
dev.off()

再次,忽略了几个休息时间。谢谢你的帮助!

0 个答案:

没有答案