鉴于Pandas中的以下数据框:
"Age","Gender","Impressions","Clicks","Signed_In"
36,0,3,0,1
73,1,3,0,1
30,0,3,0,1
49,1,3,0,1
47,1,11,0,1
我需要创建一个单独的分类变量(列),它根据年龄保存每行的bin标签。例如,反对行 -
36,0,3,0,1
我想要另一个专栏显示'介于35和45之间'。
最终记录应显示为 -
36,0,3,0,1,'Between 35 and 45'
答案 0 :(得分:3)
您应该创建一组示例数据,以帮助人们回答您的问题:
import pandas as pd
import numpy as np
d = {'Age' : [36, 73, 30, 49, 47],
'Gender' : [0, 1, 0, 1, 1],
'Impressions' : [3, 3, 3, 3, 11],
'Clicks' : [0, 0, 0, 0, 0],
'Signed_In' : [1, 1, 1, 1, 1]}
df = pd.DataFrame(d)
使人们可以轻松复制和粘贴,而不必手动创建问题。
numpy的round函数将舍入小数位负数:
df['Age_rounded'] = np.round(df['Age'], -1)
Age Clicks Gender Impressions Signed_In Age_rounded
0 36 0 0 3 1 40
1 73 0 1 3 1 70
2 30 0 0 3 1 30
3 49 0 1 3 1 50
4 47 0 1 11 1 50
然后,您可以将字典映射到这些值:
categories_dict = {30 : 'Between 25 and 35',
40 : 'Between 35 and 45',
50 : 'Between 45 and 55',
70 : 'Between 65 and 75'}
df['category'] = df['Age_rounded'].map(categories_dict)
Age Clicks Gender Impressions Signed_In Age_rounded category
0 36 0 0 3 1 40 Between 35 and 45
1 73 0 1 3 1 70 Between 65 and 75
2 30 0 0 3 1 30 Between 25 and 35
3 49 0 1 3 1 50 Between 45 and 55
4 47 0 1 11 1 50 Between 45 and 55