GridSearchCV如何用于群集(MeanShift或DBSCAN)?

时间:2014-09-02 22:27:40

标签: scikit-learn cluster-analysis

我正在尝试使用scikit-learn对一些文本文档进行聚类。我正在尝试使用DBSCAN和MeanShift,并且想要确定哪些超参数(例如,bandwidth用于MeanShift而eps用于DBSCAN)最适合我正在使用的数据类型(新闻文章)。< / p>

我有一些测试数据,包括预先标记的集群。我一直在尝试使用scikit-learn的{​​{1}}但是不明白在这种情况下如何(或者如果可以)应用,因为它需要分割测试数据,但我想对整个数据集运行评估,并将结果与​​预先标记的数据进行比较。

我一直在尝试指定一个评分函数,它将估算器的标签与真实标签进行比较,但当然它不起作用,因为只有一个数据样本已经聚集,而不是全部。

这里有什么合适的方法?

2 个答案:

答案 0 :(得分:1)

您是否考虑过自己实施搜索

实现for循环并不是特别困难。即使你想优化两个参数,它仍然相当容易。

对于DBSCAN和MeanShift,我建议首先了解您的相似性度量。根据对度量的理解而不是参数优化来选择参数以匹配某些标签(具有过度拟合的高风险)更有意义。

换句话说,两个假定要聚集的文章在哪个距离?

如果这个距离从一个数据点到另一个数据点变化太大,这些算法将会严重失败;并且您可能需要找到归一化距离函数,以使实际相似度值再次有意义。 TF-IDF是文本的标准,但主要是在检索上下文中。它们可能在聚类环境中工作得更糟。

还要注意MeanShift(类似于k-means)需要重新计算坐标 - 在文本数据上,这可能会产生不希望的结果;更新的坐标实际上变得更糟,而不是更好。

答案 1 :(得分:0)

以下用于DBSCAN的功能可能会有所帮助。我已经编写了它来遍历超参数eps和min_samples,并包括用于最小和最大群集的可选参数。由于DBSCAN是不受监督的,因此我没有包括评估参数。

def dbscan_grid_search(X_data, lst, clst_count, eps_space = 0.5,
                       min_samples_space = 5, min_clust = 0, max_clust = 10):

    """
Performs a hyperparameter grid search for DBSCAN.

Parameters:
    * X_data            = data used to fit the DBSCAN instance
    * lst               = a list to store the results of the grid search
    * clst_count        = a list to store the number of non-whitespace clusters
    * eps_space         = the range values for the eps parameter
    * min_samples_space = the range values for the min_samples parameter
    * min_clust         = the minimum number of clusters required after each search iteration in order for a result to be appended to the lst
    * max_clust         = the maximum number of clusters required after each search iteration in order for a result to be appended to the lst


Example:

# Loading Libraries
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
import pandas as pd

# Loading iris dataset
iris = datasets.load_iris()
X = iris.data[:, :] 
y = iris.target

# Scaling X data
dbscan_scaler = StandardScaler()

dbscan_scaler.fit(X)

dbscan_X_scaled = dbscan_scaler.transform(X)

# Setting empty lists in global environment
dbscan_clusters = []
cluster_count   = []


# Inputting function parameters
dbscan_grid_search(X_data = dbscan_X_scaled,
                   lst = dbscan_clusters,
                   clst_count = cluster_count
                   eps_space = pd.np.arange(0.1, 5, 0.1),
                   min_samples_space = pd.np.arange(1, 50, 1),
                   min_clust = 3,
                   max_clust = 6)

"""

    # Importing counter to count the amount of data in each cluster
    from collections import Counter


    # Starting a tally of total iterations
    n_iterations = 0


    # Looping over each combination of hyperparameters
    for eps_val in eps_space:
        for samples_val in min_samples_space:

            dbscan_grid = DBSCAN(eps = eps_val,
                                 min_samples = samples_val)


            # fit_transform
            clusters = dbscan_grid.fit_predict(X = X_data)


            # Counting the amount of data in each cluster
            cluster_count = Counter(clusters)


            # Saving the number of clusters
            n_clusters = sum(abs(pd.np.unique(clusters))) - 1


            # Increasing the iteration tally with each run of the loop
            n_iterations += 1


            # Appending the lst each time n_clusters criteria is reached
            if n_clusters >= min_clust and n_clusters <= max_clust:

                dbscan_clusters.append([eps_val,
                                        samples_val,
                                        n_clusters])


                clst_count.append(cluster_count)

    # Printing grid search summary information
    print(f"""Search Complete. \nYour list is now of length {len(lst)}. """)
    print(f"""Hyperparameter combinations checked: {n_iterations}. \n""")