我有两个2d numpy数组,用于绘制模拟结果。
两个数组a
和b
的第一列包含时间间隔,第二列包含要绘制的数据。这两个数组具有不同的形状a(500,2)
b(600,2)
。我想通过第一列比较这两个numpy数组,并创建第三个数组,其中匹配项位于a
的第一列。如果未找到匹配项,请将0添加到第三列。
这样做有什么难题吗?
例如:
a=[[0.002,0.998],
[0.004,0.997],
[0.006,0.996],
[0.008,0.995],
[0.010,0.993]]
b= [[0.002,0.666],
[0.004,0.665],
[0.0041,0.664],
[0.0042,0.664],
[0.0043,0.664],
[0.0044,0.663],
[0.0045,0.663],
[0.0005,0.663],
[0.006,0.663],
[0.0061,0.662],
[0.008,0.661]]
预期产出
c= [[0.002,0.998,0.666],
[0.004,0.997,0.665],
[0.006,0.996,0.663],
[0.008,0.995,0.661],
[0.010,0.993, 0 ]]
答案 0 :(得分:2)
我可以快速将解决方案视为
import numpy as np
a = np.array([[0.002, 0.998],
[0.004, 0.997],
[0.006, 0.996],
[0.008, 0.995],
[0.010, 0.993]])
b = np.array([[0.002, 0.666],
[0.004, 0.665],
[0.0041, 0.664],
[0.0042, 0.664],
[0.0043, 0.664],
[0.0044, 0.663],
[0.0045, 0.663],
[0.0005, 0.663],
[0.0006, 0.663],
[0.00061, 0.662],
[0.0008, 0.661]])
c = []
for row in a:
index = np.where(b[:,0] == row[0])[0]
if np.size(index) != 0:
c.append([row[0], row[1], b[index[0], 1]])
else:
c.append([row[0], row[1], 0])
print c
正如上面的评论所指出,似乎存在数据输入错误
答案 1 :(得分:2)
import numpy as np
i = np.intersect1d(a[:,0], b[:,0])
overlap = np.vstack([i, a[np.in1d(a[:,0], i), 1], b[np.in1d(b[:,0], i), 1]]).T
underlap = np.setdiff1d(a[:,0], b[:,0])
underlap = np.vstack([underlap, a[np.in1d(a[:,0], underlap), 1], underlap*0]).T
fast_c = np.vstack([overlap, underlap])
这可以通过使用intersect1d获取a
和b
的第一列的交集,然后使用in1d来交叉引用与第二列的交集
vstack
垂直堆叠输入元素,需要转置才能获得正确的尺寸(非常快速的操作)。
然后在a
中使用setdiff1d查找不在b
中的时间,并通过在第三列中添加0来完成结果。
打印出来
array([[ 0.002, 0.998, 0.666],
[ 0.004, 0.997, 0.665],
[ 0.006, 0.996, 0. ],
[ 0.008, 0.995, 0. ],
[ 0.01 , 0.993, 0. ]])
答案 2 :(得分:0)
以下适用于numpy数组和简单的python列表。
c = [[*x, y[1]] for x in a for y in b if x[0] == y[0]]
d = [[*x, 0] for x in a if x[0] not in [y[0] for y in b]]
c.extend(d)
比我更勇敢的人可以尝试制作这一行。