我想对包含除法和一些三角函数的函数应用最小化,如下面的代码片段所示。 但是出现错误,除以零:
RuntimeWarning:除以split_new_instance()
中遇到的零除以Lx=2592.
Ly=1936.
YA, XA = np.mgrid[0:Ly, 0:Lx]
XAvect=np.reshape(XA,(Lx*Ly))
YAvect=np.reshape(YA,(Lx*Ly))
#Initialization
x0 = 200.
y0 = 200.
KI = 100000.
T = 20.
A1 = 50.
A2 = 50.
def residual_V2west(vars, XA, YA, donnees):
KI = vars[0]
A1 = vars[1]
A2 = vars[2]
x0 = vars[3]
y0 = vars[4]
modeleV2 = KI/(G)*np.sqrt(np.sqrt((XA-x0)**2 + (YA-y0)**2)/(2*np.pi))*np.sin((np.arctan(((YA-y0)/(XA-x0))))/2)*(Kappa + 1 - 2*np.cos(np.arctan(((YA-y0)/(XA-x0)))/2)**2) + \
A1*np.sqrt((XA-x0)**2+(YA-y0)**2)*np.cos(np.arctan((YA-y0)/(XA-x0))) + A2
return (donnees-modeleV2)
from scipy.optimize import leastsq
vars = [KI, A1, A2, x0, y0]
out_V_west = sco.leastsq(residual_V2west, vars, args=(XAvect, YAvect, Vmvect),epsfcn=0.01)
print out_V_west
答案 0 :(得分:1)
您可以尝试通过将分母定义为小数而不是零来避免除以零:
XAmx0 = XA-x0
if abs(XAmx0) < 1e-12: XAmx0 = 1e-12
然后除以XAmx0
而不是XA-x0
这使你在残差函数中的表达式正常化并且不会影响你的结果(如果最优解中的分母大约为1e-12,那么无论如何你都可能遇到数值拟合的问题)
答案 1 :(得分:0)
我通过使用:ma.masked_invalid(...)