我使用skimage.feature.blob_doh
检测图像上的斑点,然后以格式获取斑点区域:
A =数组([[121,271,30], [123,44,23], [123,205,20], [124,336,20], [126,101,20], [126,153,20], [156,302,30], [185,348,30], [192,212,23], [193,275,23], [195,100,23], [197,44,20], [197,153,20], [260,173,30], [262,243,23], [265,113,23], [270,363,30]])
A:(n,3)ndarray
一个2d数组,每行代表3个值,(y,x,sigma)
其中(y,x)
是blob的坐标,sigma
是。{
高斯核的标准偏差(它大约只是我区域的半径)
所以问题是 - 如何选择所有这些区域进行进一步的数据处理(计算平均特征,进行一些聚类和分类)。现在我只是在绘图上绘制它们,但不能将它们迁移到位图\数组变量。
我不想使用这个任务OpenCV库,我必须使用numpy / scipy / skimage和其他库来做。
fig, ax = plt.subplots(1, 1)
ax.set_title(title)
ax.imshow(image, interpolation='nearest')
for blob in blobs:
y, x, r = blob
c = plt.Circle((x, y), r, color=color, linewidth=2, fill=False)
print c
ax.add_patch(c)
plt.show()
感谢您的帮助!
UPD:获得了一些裁剪代码,但是它做了一些奇怪的事情......裁剪得很好,但坐标是什么?
def crop_and_save_blobs(image, blobs):
image = np.asarray(image)
for blob in blobs:
y, x, radius = blob
center = (x, y)
mask = np.zeros((image.shape[0],image.shape[1]))
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if (i-center[0])**2 + (j-center[0])**2 < radius**2:
mask[i,j] = 1
# assemble new image (uint8: 0-255)
newImArray = np.empty(image.shape,dtype='uint8')
# colors (three first columns, RGB)
newImArray[:,:,:3] = image[:,:,:3]
# transparency (4th column)
newImArray[:,:,3] = mask*255
newIm = Image.fromarray(newImArray, "RGBA")
plt.imshow(newIm)
plt.show()
答案 0 :(得分:0)
所以,有一种方法我做到了。
def circleToSquare(x,y,r):
'''
Получить 2 точки, по которым можно определить квадрат,
описанный вокруг круга с известным центром и радиусом
'''
temp = [x, y - r]
A = [temp[0] - r, temp[1]]
B = [A[0] + 2*r, A[1]]
C = [B[0], B[1] + 2*r]
return A[0], A[1], C[0], C[1]
def imgCrop(im, x, y, radius):
'''
Обрезать круглую область по квадрату
'''
box = circleToSquare(x,y,radius)
return im.crop(box)
def separateBlobs(image, blobs):
'''
Выделить области, в которых потенциально может быть объект
'''
separate = []
image = np.asarray(image)
index = 0
for blob in blobs:
y, x, radius = blob
center = y, x
mask = np.zeros((image.shape[0],image.shape[1]))
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if (i-center[0])**2 + (j-center[1])**2 < radius**2:
mask[i,j] = 1
# assemble new image (uint8: 0-255)
newImArray = np.empty(image.shape,dtype='uint8')
# colors (three first columns, RGB)
newImArray[:,:,:3] = image[:,:,:3]
# transparency (4th column)
newImArray[:,:,3] = mask*255
newIm = Image.fromarray(newImArray, "RGBA")
newIm = imgCrop(newIm, x, y, radius)
misc.imsave('image' + str(index) + ".png", newIm)
separate.append(newIm)
index += 1
return separate
裁剪这些图像然后运行的三种方法:
im = Image.open(path).convert("RGBA")
separateB = separateBlobs(im, blobs)
我知道,不是完美的代码,我必须努力,但它完成了我的任务。