格雷厄姆扫描问题点数很高

时间:2014-08-07 19:02:01

标签: c# wpf algorithm computational-geometry

当我的列表有很多分数时,我在格雷厄姆扫描算法中遇到了一个问题,但每次都很好,点数很少。我做了一些截图:

工作:(300分) working

不工作(5000分) not working

角度计算:

public static double angle(MyVector3D vec1, MyVector3D vec2)
{
    return Math.Atan2(vec2.Y - vec1.Y, vec2.X - vec1.X) * 180 / Math.PI;

}

极角分选点取决于最大Y点:

//bubblesort
    private void sortList()
    {
        double temp = 0.0;
        MyVector3D tempVector = new MyVector3D();
        for (int i = 1; i < points.Count; i++)
        {
            for (int j = 1; j < points.Count - 1; j++)
            {
                if (angles[j] < angles[j + 1])
                {
                    temp = angles[j + 1];
                    tempVector = points[j + 1];
                    angles[j + 1] = angles[j];
                    points[j + 1] = points[j];
                    angles[j] = temp;
                    points[j] = tempVector;
                }
            }   
        }

ccw方法:

private double ccw(MyVector3D vec1, MyVector3D vec2, MyVector3D vec3)
{
    // ccwTest = ((vec2.X - vec1.X) * (vec3.Y - vec1.Y)) - ((vec2.Y - vec1.Y) * (vec3.X - vec1.X));
    return ((vec2.X - vec1.X) * (vec3.Y - vec1.Y)) - ((vec2.Y - vec1.Y) * (vec3.X - vec1.X));
}

格雷厄姆扫描算法:

for (int i = 2; i < points.Count; i++)
    {
        while (ccw(points[M - 1], points[M], points[i]) > 0)
        {
            if (M > 1)
            {
                points.RemoveAt(M);
                M -= 1;
                i--;
            }
            else if (i == points.Count - 1)
            {
                break;
            }

            else
            {
                i += 1;
            }
        }
        //goodPoints.Add(points[M]);
        //listBoxInfos.Items.Add("g" + (int)points[M].X + "," + (int)points[M].Y + "," + 0);
        //listBoxInfos.Items.Add("ccw" + ccwTest);
        M += 1;

    }

我真的不知道为什么我的程序会在800多点上爆炸......难以调试,因为算法在300,400,500点时运行良好。

Ty for informa。

3 个答案:

答案 0 :(得分:5)

维基百科上的算法被打破了。它不处理多个点彼此共线并且具有最小点的情况。例如,以下测试用例将失败:

        Vector3[] points3 = new Vector3[] 
        {
            new Vector3( 1, 1, 0),
            new Vector3( 5, 5, 0),
            new Vector3( 3, 3, 0),
            new Vector3( 2, 2, 0),
            new Vector3( 1, 1, 0),
            new Vector3( 1, 10, 0),

        };

问题在于,当沿着这些点行进时,如果该点位于船体的最后两个点之间,则可能需要丢弃当前点而不是延长船体或更换船体上的最后一个点。 。 (只有当点也与最小点共线时才会发生这种情况,否则前面的角度排序会阻止这种双后退。)在显示的伪代码中没有逻辑。

我还认为维基百科算法可能会严重处理浮点舍入错误。特别地,检查ccw&lt; = 0看起来有问题。

这是尝试清理维基百科算法。我不得不摆脱(模糊地说是kludgy)“sentinal point”,因为如果所有的点都是水平对齐的,它将基本上随机选择:

    public static IList<Vector3> GrahamScanCompute(IList<Vector3> initialPoints)
    {
        if (initialPoints.Count < 2)
            return initialPoints.ToList();

        // Find point with minimum y; if more than one, minimize x also.
        int iMin = Enumerable.Range(0, initialPoints.Count).Aggregate((jMin, jCur) =>
        {
            if (initialPoints[jCur].Y < initialPoints[jMin].Y)
                return jCur;
            if (initialPoints[jCur].Y > initialPoints[jMin].Y)
                return jMin;
            if (initialPoints[jCur].X < initialPoints[jMin].X)
                return jCur;
            return jMin;
        });
        // Sort them by polar angle from iMin, 
        var sortQuery = Enumerable.Range(0, initialPoints.Count)
            .Where((i) => (i != iMin)) // Skip the min point
            .Select((i) => new KeyValuePair<double, Vector3>(Math.Atan2(initialPoints[i].Y - initialPoints[iMin].Y, initialPoints[i].X - initialPoints[iMin].X), initialPoints[i]))
            .OrderBy((pair) => pair.Key)
            .Select((pair) => pair.Value);
        List<Vector3> points = new List<Vector3>(initialPoints.Count);
        points.Add(initialPoints[iMin]);     // Add minimum point
        points.AddRange(sortQuery);          // Add the sorted points.

        int M = 0;
        for (int i = 1, N = points.Count; i < N; i++)
        {
            bool keepNewPoint = true;
            if (M == 0)
            {
                // Find at least one point not coincident with points[0]
                keepNewPoint = !NearlyEqual(points[0], points[i]);
            }
            else
            {
                while (true)
                {
                    var flag = WhichToRemoveFromBoundary(points[M - 1], points[M], points[i]);
                    if (flag == RemovalFlag.None)
                        break;
                    else if (flag == RemovalFlag.MidPoint)
                    {
                        if (M > 0)
                            M--;
                        if (M == 0)
                            break;
                    }
                    else if (flag == RemovalFlag.EndPoint)
                    {
                        keepNewPoint = false;
                        break;
                    }
                    else
                        throw new Exception("Unknown RemovalFlag");
                }
            }
            if (keepNewPoint)
            {
                M++;
                Swap(points, M, i);
            }
        }
        // points[M] is now the last point in the boundary.  Remove the remainder.
        points.RemoveRange(M + 1, points.Count - M - 1);
        return points;
    }

    static void Swap<T>(IList<T> list, int i, int j)
    {
        if (i != j)
        {
            T temp = list[i];
            list[i] = list[j];
            list[j] = temp;
        }
    }

    public static double RelativeTolerance { get { return 1e-10; } }

    public static bool NearlyEqual(Vector3 a, Vector3 b)
    {
        return NearlyEqual(a.X, b.X) && NearlyEqual(a.Y, b.Y);
    }

    public static bool NearlyEqual(double a, double b)
    {
        return NearlyEqual(a, b, RelativeTolerance);
    }

    public static bool NearlyEqual(double a, double b, double epsilon)
    {
        // See here: http://floating-point-gui.de/errors/comparison/
        if (a == b)
        { // shortcut, handles infinities
            return true;
        }

        double absA = Math.Abs(a);
        double absB = Math.Abs(b);
        double diff = Math.Abs(a - b);
        double sum = absA + absB;
        if (diff < 4*double.Epsilon || sum < 4*double.Epsilon)
            // a or b is zero or both are extremely close to it
            // relative error is less meaningful here
            return true;

        // use relative error
        return diff / (absA + absB) < epsilon;
    }

    static double CCW(Vector3 p1, Vector3 p2, Vector3 p3)
    {
        // Compute (p2 - p1) X (p3 - p1)
        double cross1 = (p2.X - p1.X) * (p3.Y - p1.Y);
        double cross2 = (p2.Y - p1.Y) * (p3.X - p1.X);
        if (NearlyEqual(cross1, cross2))
            return 0;
        return cross1 - cross2;
    }

    enum RemovalFlag
    {
        None,
        MidPoint,
        EndPoint
    };

    static RemovalFlag WhichToRemoveFromBoundary(Vector3 p1, Vector3 p2, Vector3 p3)
    {
        var cross = CCW(p1, p2, p3);
        if (cross < 0)
            // Remove p2
            return RemovalFlag.MidPoint;
        if (cross > 0)
            // Remove none.
            return RemovalFlag.None;
        // Check for being reversed using the dot product off the difference vectors.
        var dotp = (p3.X - p2.X) * (p2.X - p1.X) + (p3.Y - p2.Y) * (p2.Y - p1.Y);
        if (NearlyEqual(dotp, 0.0))
            // Remove p2
            return RemovalFlag.MidPoint;
        if (dotp < 0)
            // Remove p3
            return RemovalFlag.EndPoint;
        else
            // Remove p2
            return RemovalFlag.MidPoint;
    }

顺便说一句,你的算法在几个地方都是n阶平方:

  1. bubblesort是O(N ^ 2)
  2. 的顺序
  3. 在找到船体时删除点而不是将它们交换到列表的前面可以是O(N ^ 2),因为所有后续点都必须向下移动。
  4. 让我知道如果它解决了你的问题,我已经测试了一下但不完全。

答案 1 :(得分:1)

按照这个:http://en.wikipedia.org/wiki/Graham_scan和其他人的格雷厄姆扫描算法实现至少有2个问题,我认为你很幸运#39;数字较低:

1)你在你的外表中为你增加了你的余额,也就是说你通常会跳过每隔一点的测试。

2)我不相信你的移除失败点的方法,是的,关键不在船体上这里&#39;但是可能是船体上的一个点,你需要移动到这些点,或使用基于堆栈的方法。

答案 2 :(得分:1)

我想这超出了评论部分的范围,所以我会从中得出答案:

让点[M-1]与点[i]处于相同的坐标。

然后知道:ccw =((vec2.X - vec1.X)*(vec3.Y - vec1.Y)) - ((vec2.Y - vec1.Y)*(vec3.X - vec1.X) )对应于vec1的点[M-1]和对应于vec3的点[i]。

用vec1替换vec3得到:ccw =((vec2.X - vec1.X)*(vec1.Y - vec1.Y)) - ((vec2.Y - vec1.Y)*(vec1.X - vec1.X))我们可以清楚地看到这将是== 0.因为你肯定如果ccw == 0这些点将保留在凸包中,那么这将使你的船体的一部分成为两条完全重叠的线,除非我和#39;我错了。


  

感谢。我检查了算法,你是对的kugans。问题是   当ccw == 0时,主要问题是如何消除点数   ccw == 0,它们不是凸包的一部分,并保留那些,   因为同一矢量中的3个点可能是凸包的一部分。   知道怎么解决这个问题吗?

(您可能希望查看dbc的代码,但这是我的答案)

我认为您不想在凸包中与ccw == 0保持任何联系。 当ccw == 0时,你的矢量之间的角度为180度或0度。

0deg的情况就像我在回答的开头所说的那样(这些点实际上不需要重叠,更容易以这种方式展示)。

对于180deg的情况,您需要制作一些额外的代码。我引用dbc:

  

可能有必要丢弃当前点而不是其中任何一点   如果是船体,则延长船体或更换船体上的最后一个点   点位于船体的最后两个点之间

如果你想让测试变得更容易,你也可以提取所有凸包点的位置并重放那些。