本周末,我根据回溯算法研究了数独求解器(Ruby quiz)。数独加载在81个整数(9x9网格)的数组sudoku_arr
中,其中0是空点。有valid?
方法检查sudoku_arr
是否可以是有效的数独。
official backtracking algorithm是这样的:在下一个空位上尝试值,检查它是否是有效的数独,如果不是将值增加1(最多9),如果有效继续并在下一个点尝试第一个值,如果不增加前值0的值。
因此我们必须跟踪前一个数组,这就是我出错的地方,我不确定它是否可以解决。我的代码中无效的部分是solve_by_increasing_value_previous_index
类中的SudokuSolver
。这是代码:
require 'pp'
sudoku_str = "
+-------+-------+-------+
| _ 6 _ | 1 _ 4 | _ 5 _ |
| _ _ 8 | 3 _ 5 | 6 _ _ |
| 2 _ _ | _ _ _ | _ _ 1 |
+-------+-------+-------+
| 8 _ _ | 4 _ 7 | _ _ 6 |
| _ _ 6 | _ _ _ | 3 _ _ |
| 7 _ _ | 9 _ 1 | _ _ 4 |
+-------+-------+-------+
| 5 _ _ | _ _ _ | _ _ 2 |
| _ _ 7 | 2 _ 6 | 9 _ _ |
| _ 4 _ | 5 _ 8 | _ 7 _ |
+-------+-------+-------+"
class SudokuException < StandardError
attr_reader :sudoku_arr
def initialize(message, sudoku_arr)
super(message)
@sudoku_arr = sudoku_arr
end
end
class Sudoku
attr_accessor :sudoku_arr,
:index_of_tried_value,
:tried_value
def initialize(sudoku_arr, index_of_tried_value, tried_value)
@sudoku_arr = sudoku_arr
@index_of_tried_value = index_of_tried_value
@tried_value = tried_value
end
def rows_valid?
rows_have_unique_values?(@sudoku_arr)
end
def columns_valid?
rows_have_unique_values?(@sudoku_arr.each_slice(9).to_a.transpose.flatten!)
end
def squares_valid?
tmp_a = @sudoku_arr.each_slice(3).to_a
rows_have_unique_values?(
(tmp_a[0] << tmp_a[3] << tmp_a[6] << tmp_a[1] << tmp_a[4] << tmp_a[7] <<
tmp_a[2] << tmp_a[5] << tmp_a[8] << tmp_a[9] << tmp_a[12] << tmp_a[15] <<
tmp_a[10] << tmp_a[13] << tmp_a[16] << tmp_a[11] << tmp_a[14] << tmp_a[17] <<
tmp_a[18] << tmp_a[21] << tmp_a[24] << tmp_a[19] << tmp_a[22] << tmp_a[25] <<
tmp_a[20] << tmp_a[23] << tmp_a[26]).flatten!)
end
def valid?
rows_valid? && columns_valid? && squares_valid?
end
def rows_have_unique_values?(arr)
(arr[0,9]- [0]).uniq.size == (arr[0,9]- [0]).size &&
(arr[9,9]- [0]).uniq.size == (arr[9,9]- [0]).size &&
(arr[18,9]-[0]).uniq.size == (arr[18,9]-[0]).size &&
(arr[27,9]-[0]).uniq.size == (arr[27,9]-[0]).size &&
(arr[36,9]-[0]).uniq.size == (arr[36,9]-[0]).size &&
(arr[45,9]-[0]).uniq.size == (arr[45,9]-[0]).size &&
(arr[54,9]-[0]).uniq.size == (arr[54,9]-[0]).size &&
(arr[63,9]-[0]).uniq.size == (arr[63,9]-[0]).size &&
(arr[72,9]-[0]).uniq.size == (arr[72,9]-[0]).size
end
end
class SudokuSolver
attr_accessor :sudoku_arr,
:indeces_of_zeroes
def initialize(str)
@sudoku_arr = str.gsub(/[|\+\-\s]/,"").gsub(/_/,'0').split(//).map(&:to_i)
@indeces_of_zeroes = []
@sudoku_arr.each_with_index { |e,index| @indeces_of_zeroes << index if e.zero? }
end
def solve
sudoku_arr = @sudoku_arr
try_index = @indeces_of_zeroes[0]
try_value = 1
sudoku = Sudoku.new(sudoku_arr, try_index, try_value)
solve_by_increasing_value(sudoku)
end
def solve_by_increasing_value(sudoku)
if sudoku.tried_value < 10
sudoku.sudoku_arr[sudoku.index_of_tried_value] = sudoku.tried_value
if sudoku.valid?
pp "increasing_index..."
solve_by_increasing_index(sudoku)
else
pp "increasing_value..."
sudoku.tried_value += 1
solve_by_increasing_value(sudoku)
end
else
pp "Increasing previous index..."
solve_by_increasing_value_previous_index(sudoku)
end
end
def solve_by_increasing_index(sudoku)
if sudoku.sudoku_arr.index(0).nil?
raise SudokuException(sudoku.sudoku_arr.each_slice(9)), "Sudoku is solved."
end
sudoku.index_of_tried_value = sudoku.sudoku_arr.index(0)
sudoku.tried_value = 1
solve_by_increasing_value(sudoku)
end
def solve_by_increasing_value_previous_index(sudoku)
# Find tried index and get the one before it
tried_index = sudoku.index_of_tried_value
previous_index = indeces_of_zeroes[indeces_of_zeroes.index(tried_index)-1]
# Setup previous Sudoku so we can go back further if necessary:
# Set tried index back to zero
sudoku.sudoku_arr[tried_index] = 0
# Set previous index
sudoku.index_of_tried_value = previous_index
# Set previous value at index
sudoku.tried_value = sudoku.sudoku_arr[previous_index]
pp previous_index
pp sudoku.tried_value
# TODO Throw exception if we go too far back (i.e., before first index) since Sudoku is unsolvable
# Continue business as usual by increasing the value of the previous index
solve_by_increasing_value(sudoku)
end
end
sudoku_solver = SudokuSolver.new(sudoku_str)
sudoku_solver.solve
不幸的是,代码并没有回溯到开头。代码打印:
&#34; increasing_index ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34; increasing_value ...&#34; &#34;增加以前的索引...&#34; 16 2
在循环中直到它抛出SystemStackError
,因为堆栈级别太深。
发生的事情是&#34;回溯&#34;并不比一个指数更进一步。当solve_by_increasing_value_previous_index
转到上一个索引时,它会获取之前的值。在这种情况下,它是2,但是2不工作,因此我们应该将它减少到1并继续,如果这不起作用,丢弃2并再次使其为0并进一步返回。
不幸的是,我没有看到实现此算法的简单方法。 (我想到的是一个@too_much_looping
变量,当solve_by_increasing_value_previous_index
被调用时会增加,81次后会重置。但这只会让你再回来一次,我们不能循环回到开头。 \
我希望有人能给我一些帮助!一般代码评论也非常受欢迎,我怀疑这不是100%惯用的Ruby。
答案 0 :(得分:1)
我还没有通过您的代码,但回溯算法可归结为以下内容:
int solve(char board[81]) {
int i, c;
if (!is_valid(board)) return 0;
c = first_empty_cell(board);
if (c<0) return 1; /* board is full */
for (i=1; i<=9; i++) {
board[c] = i;
if (solve(board)) return 1;
}
board[c] = 0;
return 0;
}
这是一个递归函数,它在找到的第一个空单元格中尝试从1
到9
的每个值(由first_empty_cell()
返回)。如果这些值中没有一个导致解决方案,那么您必须位于搜索树的死分支上,因此可以将相关单元格重置为零(或者用于指示未填充单元格的任何值)。
当然,你可以做很多其他事情来让你的软件更快地达到解决方案,但就回溯而言,这就是它的全部内容。
好的,我现在正在浏览您的代码。看起来您将index_of_tried_value
存储为数独网格的属性。那不会奏效。您需要将此值存储在求解器例程的局部变量中,以便可以将其推送到堆栈并在回溯搜索树时恢复。
答案 1 :(得分:1)
有一个名为&#34;跳舞链接&#34;由knuth发明,可以在数独中应用。 http://en.wikipedia.org/wiki/Dancing_Links
Soduko问题可以通过确切的覆盖问题来解决。这是文章 http://www-cs-faculty.stanford.edu/~uno/papers/dancing-color.ps.gz
这是我的代码解决确切的封面问题,它也可以解决数独 并且回溯部分在dlx()
中const int INF = 0x3f3f3f3f;
const int T = 9;
const int N = T*T*T+10;
const int M = T*T*T*4+T*T*4+10;
int id;
int L[M],R[M],U[M],D[M];
int ANS[N],SUM[N],COL[M],ROW[M],H[N];
struct Dancing_links
{
Dancing_links() {}
Dancing_links(int n,int m)
{
for(int i=0; i<=m; i++)
{
SUM[i] = 0;
L[i+1] = D[i] = U[i] = i;
R[i]=i+1;
}
L[m+1]=R[m]=0,L[0]=m,id=m+1;
clr(H,-1);
}
void remove(int c)
{
L[R[c]] = L[c];
R[L[c]] = R[c];
for(int i=D[c]; i!=c; i=D[i])
for(int j=R[i]; j!=i; j=R[j])
{
U[D[j]] = U[j];
D[U[j]] = D[j];
SUM[COL[j]]--;
}
}
void resume(int c)
{
for(int i=U[c]; i!=c; i=U[i])
for(int j=L[i]; j!=i; j=L[j])
{
U[D[j]] = D[U[j]] = j;
SUM[COL[j]]++;
}
L[R[c]] = R[L[c]] = c;
}
void add(int r,int c)
{
ROW[id] = r,COL[id] = c;
SUM[c]++;
D[id] = D[c],U[D[c]] = id,U[id] = c,D[c] = id;
if(H[r] < 0)
H[r] = L[id] = R[id] = id;
else
R[id] = R[H[r]],L[R[H[r]]] = id,L[id] = H[r],R[H[r]] = id;
id++;
}
int dlx(int k)
{
if(R[0] == 0)
{
/*output the answer*/return k;
}
int s=INF,c;
for(int i=R[0]; i; i=R[i])
if(SUM[i] < s)
s=SUM[c=i];
remove(c);
for(int r=D[c]; r!=c; r=D[r])
{
ANS[k] = ROW[r];
for(int j=R[r]; j!=r; j=R[j]) remove(COL[j]);
int tmp = dlx(k+1);
if(tmp != -1) return tmp; //delete if multipal answer is needed
for(int j=L[r]; j!=r; j=L[j]) resume(COL[j]);
}
resume(c);
return -1;
}
};