对于x64,我可以使用它:
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
a[0] += hi;
a[1] += lo;
}
但我想以便携式执行相同的计算。例如,在x86上工作。
答案 0 :(得分:13)
据我所知,你想要一个64位乘法的便携式纯C实现,输出为128位值,存储在两个64位值中。在这种情况下,article声称拥有您需要的东西。该代码是为C ++编写的。把它变成C代码并不需要太多:
void mult64to128(uint64_t op1, uint64_t op2, uint64_t *hi, uint64_t *lo)
{
uint64_t u1 = (op1 & 0xffffffff);
uint64_t v1 = (op2 & 0xffffffff);
uint64_t t = (u1 * v1);
uint64_t w3 = (t & 0xffffffff);
uint64_t k = (t >> 32);
op1 >>= 32;
t = (op1 * v1) + k;
k = (t & 0xffffffff);
uint64_t w1 = (t >> 32);
op2 >>= 32;
t = (u1 * op2) + k;
k = (t >> 32);
*hi = (op1 * op2) + w1 + k;
*lo = (t << 32) + w3;
}
答案 1 :(得分:7)
由于您有gcc
作为标记,请注意您只能使用gcc
的128位整数类型:
typedef unsigned __int128 uint128_t;
// ...
uint64_t x, y;
// ...
uint128_t result = (uint128_t)x * y;
uint64_t lo = result;
uint64_t hi = result >> 64;
答案 2 :(得分:2)
在我看来,公认的解决方案并不是真正的最佳解决方案。
UMAAL
的人都不会滞后,但在4条指令中具有64位至128位的永恒乘积。开个玩笑,针对ARMv6进行优化要比其他任何平台都要好得多,因为它将带来最大的好处。 x86需要复杂的例程,这将是一个死胡同的优化。
我发现(并在xxHash3中使用)的最佳方法是这种方法,它利用了使用宏的多种实现方式:
它比x86上的mult64to128(通过1-2条指令)要慢 tiny 一点,但是在ARMv6上要快很多。
#include <stdint.h>
#ifdef _MSC_VER
# include <intrin.h>
#endif
/* Prevents a partial vectorization from GCC. */
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
__attribute__((__target__("no-sse")))
#endif
static uint64_t multiply64to128(uint64_t lhs, uint64_t rhs, uint64_t *high)
{
/*
* GCC and Clang usually provide __uint128_t on 64-bit targets,
* although Clang also defines it on WASM despite having to use
* builtins for most purposes - including multiplication.
*/
#if defined(__SIZEOF_INT128__) && !defined(__wasm__)
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
*high = (uint64_t)(product >> 64);
return (uint64_t)(product & 0xFFFFFFFFFFFFFFFF);
/* Use the _umul128 intrinsic on MSVC x64 to hint for mulq. */
#elif defined(_MSC_VER) && defined(_M_IX64)
# pragma intrinsic(_umul128)
/* This intentionally has the same signature. */
return _umul128(lhs, rhs, high);
#else
/*
* Fast yet simple grade school multiply that avoids
* 64-bit carries with the properties of multiplying by 11
* and takes advantage of UMAAL on ARMv6 to only need 4
* calculations.
*/
/* First calculate all of the cross products. */
uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF);
uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF);
uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32);
uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);
/* Now add the products together. These will never overflow. */
uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
*high = upper;
return (cross << 32) | (lo_lo & 0xFFFFFFFF);
#endif /* portable */
}
在ARMv6上,没有比这更好的了,至少在Clang上是如此:
multiply64to128:
push {r4, r5, r11, lr}
umull r12, r5, r2, r0
umull r2, r4, r2, r1
umaal r2, r5, r3, r0
umaal r4, r5, r3, r1
ldr r0, [sp, #16]
mov r1, r2
strd r4, r5, [r0]
mov r0, r12
pop {r4, r5, r11, pc}
被接受的解决方案由于instcombine错误而在Clang中生成了一堆adds
和adc
,以及一个额外的umull
。
我在我发布的链接中进一步解释了可移植方法。