我在asyncio事件循环中遇到了一些CPU密集型任务的问题。我在处理维护传入数据缓冲区和从中构建数据包时遇到的麻烦。我已经尝试使用执行程序来执行CPU绑定的东西,但是当从中删除数据包时,无法维护缓冲区的顺序。
我正在寻找一种最佳实践方法来实现以下功能,而无需在事件循环中执行CPU绑定任务。
import asyncio
import struct
class Reader(asyncio.Protocol):
def __init__(self):
self.extra = bytearray()
def data_received(self, data):
self.extra.extend(data)
packet = get_packet(bytes(self.extra))
if packet:
del self.extra[:len(packet)]
if verify_hash(packet): # CPU intensive
asyncio.async(distribute(packet)) # Some asyncio fan-out callback
def get_packet(data): # CPU intensive
if len(data) > HEADER_SIZE:
payload_size, = struct.unpack_from(HEADER_FORMAT, data)
if len(data) >= HEADER_SIZE + payload_size:
return data[:HEADER_SIZE + payload_size]
return None
loop = asyncio.get_event_loop()
loop.run_until_complete(loop.create_server(Reader, '0.0.0.0', 8000))
loop.run_forever()
答案 0 :(得分:5)
您希望能够尽快处理进入Reader
的所有数据,但您也无法让多个线程/进程尝试并行处理该数据;这就是你之前使用执行者遇到竞争条件的方式。相反,您应该启动一个可以处理所有数据包数据的工作进程,一次一个,使用multiprocessing.Queue
将数据从父进程传递给worker。然后,当worker有一个构建,验证并准备分发的有效数据包时,它会使用另一个multiprocessing.Queue
将其发送回父进程中的一个线程,该线程可以使用线程安全{{3}用于安排distribute
运行的方法。
这是一个未经测试的示例,可以让您了解如何执行此操作:
import asyncio
import struct
from concurrent.futures.ProcessPoolExecutor
import threading
def handle_result_packets():
""" A function for handling packets to be distributed.
This function runs in a worker thread in the main process.
"""
while True:
packet = result_queue.get()
loop.call_soon_threadsafe(asyncio.async, distribute(packet))
def get_packet(): # CPU intensive
""" Handles processing all incoming packet data.
This function runs in a separate process.
"""
extra = bytearray()
while True:
data = data_queue.get()
extra.extend(data)
if len(data) > HEADER_SIZE:
payload_size, = struct.unpack_from(HEADER_FORMAT, data)
if len(data) >= HEADER_SIZE + payload_size:
packet = data[:HEADER_SIZE + payload_size]
del extra[:len(packet)]
if verify_hash(packet):
result_queue.put(packet)
class Reader(asyncio.Protocol):
def __init__(self):
self.extra = bytearray()
self.t = threading.Thread(target=handle_result_packets)
self.t.start()
def data_received(self, data):
data_queue.put(data)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
data_queue = multiprocessing.Queue()
result_queue = multiprocessing.Queue()
p = multiprocessing.Process(target=get_packet)
p.start()
loop.run_until_complete(loop.create_server(Reader, '0.0.0.0', 8000))
loop.run_forever()
答案 1 :(得分:0)
我会尝试完成整个数据包处理逻辑,并将繁重的任务拆分成碎片。以MD5哈希为例:
@asyncio.coroutine
def verify_hash(packet):
m = hashlib.md5()
for i in range(len(packet) // 4096 + 1):
yield m.update(packet[i:i+4096])
return m.digest() == signature
@asyncio.coroutine
def handle_packet(packet):
verified = yield from verify_hash(packet)
if verified:
yield from distribute(packet)
class Reader(asyncio.Protocol):
def __init__(self):
self.extra = bytearray()
def data_received(self, data):
self.extra.extend(data)
packet = get_packet(bytes(self.extra))
if packet:
del self.extra[:len(packet)]
asyncio.async(handle_packet(packet))
请注意,数据包可以比Reader
能够处理的更多更快,因此请务必监控系统负载&在需要时停止接收。但那是另一个故事:)