我有一个到达时间列表,我使用scipy.stats.probplot绘制概率图(类似于qq-plot)。我的数据位于列表l
中,我调用
scipy.stats.probplot(l, dist=stats.expon)
如何在绘图中添加逐点置信度包络。之前的SO answer显示了如何在R中执行此操作,但我需要在python中执行此操作。
我也试过了statsmodels,但它似乎比scipy等价物略少(例如它没有计算R ^ 2错误)。
答案 0 :(得分:0)
我发布了一个稍微不同的例子,但它可能会 帮助你...
#!/usr/bin/env python
from scipy.stats import t
from numpy import average, std
from math import sqrt
if __name__ == '__main__':
# data we want to evaluate: average height of 30 one year old male and
# female toddlers. Interestingly, at this age height is not bimodal yet
data = [63.5, 81.3, 88.9, 63.5, 76.2, 67.3, 66.0, 64.8, 74.9, 81.3, 76.2,
72.4, 76.2, 81.3, 71.1, 80.0, 73.7, 74.9, 76.2, 86.4, 73.7, 81.3,
68.6, 71.1, 83.8, 71.1, 68.6, 81.3, 73.7, 74.9]
mean = average(data)
# evaluate sample variance by setting delta degrees of freedom (ddof) to
# 1. The degree used in calculations is N - ddof
stddev = std(data, ddof=1)
# Get the endpoints of the range that contains 95% of the distribution
t_bounds = t.interval(0.95, len(data) - 1)
# sum mean to the confidence interval
ci = [mean + critval * stddev / sqrt(len(data)) for critval in t_bounds]
print "Mean: %f" % mean
print "Confidence Interval 95%%: %f, %f" % (ci[0], ci[1])