我相信128位数据没有任何便携式标准数据类型。所以,我的问题是如何使用现有的标准数据类型有效地执行64位操作而不会丢失数据。
例如:我有两个uint64_t类型变量:
uint64_t x = -1; uint64_t y = -1;
现在,如何存储/检索/打印x+y, x-y, x*y and x/y
等数学运算的结果?
对于上面的变量,x + y得到的值为-1,实际上是一个带有进位1的0xFFFFFFFFFFFFFFFFULL。
void add (uint64_t a, uint64_t b, uint64_t result_high, uint64_t result_low)
{
result_low = result_high = 0;
result_low = a + b;
result_high += (result_low < a);
}
如何像add
一样执行其他操作,从而提供正确的最终输出?
如果有人共享通用算法,我会很感激,这些算法可以解决使用此类操作可能出现的溢出/下溢等问题。
任何可能有帮助的标准测试算法。
答案 0 :(得分:9)
有很多BigInteger
个库来操纵大数字。
如果您想避免库集成并且您的要求非常小,这里是我通常用于基本要求问题的基本BigInteger
代码段。您可以根据需要创建新方法或重载运算符。 此代码段经过广泛测试且无错误。
class BigInt {
public:
// default constructor
BigInt() {}
// ~BigInt() {} // avoid overloading default destructor. member-wise destruction is okay
BigInt( string b ) {
(*this) = b; // constructor for string
}
// some helpful methods
size_t size() const { // returns number of digits
return a.length();
}
BigInt inverseSign() { // changes the sign
sign *= -1;
return (*this);
}
BigInt normalize( int newSign ) { // removes leading 0, fixes sign
for( int i = a.size() - 1; i > 0 && a[i] == '0'; i-- )
a.erase(a.begin() + i);
sign = ( a.size() == 1 && a[0] == '0' ) ? 1 : newSign;
return (*this);
}
// assignment operator
void operator = ( string b ) { // assigns a string to BigInt
a = b[0] == '-' ? b.substr(1) : b;
reverse( a.begin(), a.end() );
this->normalize( b[0] == '-' ? -1 : 1 );
}
// conditional operators
bool operator < (BigInt const& b) const { // less than operator
if( sign != b.sign ) return sign < b.sign;
if( a.size() != b.a.size() )
return sign == 1 ? a.size() < b.a.size() : a.size() > b.a.size();
for( int i = a.size() - 1; i >= 0; i-- ) if( a[i] != b.a[i] )
return sign == 1 ? a[i] < b.a[i] : a[i] > b.a[i];
return false;
}
bool operator == ( const BigInt &b ) const { // operator for equality
return a == b.a && sign == b.sign;
}
// mathematical operators
BigInt operator + ( BigInt b ) { // addition operator overloading
if( sign != b.sign ) return (*this) - b.inverseSign();
BigInt c;
for(int i = 0, carry = 0; i<a.size() || i<b.size() || carry; i++ ) {
carry+=(i<a.size() ? a[i]-48 : 0)+(i<b.a.size() ? b.a[i]-48 : 0);
c.a += (carry % 10 + 48);
carry /= 10;
}
return c.normalize(sign);
}
BigInt operator - ( BigInt b ) { // subtraction operator overloading
if( sign != b.sign ) return (*this) + b.inverseSign();
int s = sign;
sign = b.sign = 1;
if( (*this) < b ) return ((b - (*this)).inverseSign()).normalize(-s);
BigInt c;
for( int i = 0, borrow = 0; i < a.size(); i++ ) {
borrow = a[i] - borrow - (i < b.size() ? b.a[i] : 48);
c.a += borrow >= 0 ? borrow + 48 : borrow + 58;
borrow = borrow >= 0 ? 0 : 1;
}
return c.normalize(s);
}
BigInt operator * ( BigInt b ) { // multiplication operator overloading
BigInt c("0");
for( int i = 0, k = a[i] - 48; i < a.size(); i++, k = a[i] - 48 ) {
while(k--) c = c + b; // ith digit is k, so, we add k times
b.a.insert(b.a.begin(), '0'); // multiplied by 10
}
return c.normalize(sign * b.sign);
}
BigInt operator / ( BigInt b ) { // division operator overloading
if( b.size() == 1 && b.a[0] == '0' ) b.a[0] /= ( b.a[0] - 48 );
BigInt c("0"), d;
for( int j = 0; j < a.size(); j++ ) d.a += "0";
int dSign = sign * b.sign;
b.sign = 1;
for( int i = a.size() - 1; i >= 0; i-- ) {
c.a.insert( c.a.begin(), '0');
c = c + a.substr( i, 1 );
while( !( c < b ) ) c = c - b, d.a[i]++;
}
return d.normalize(dSign);
}
BigInt operator % ( BigInt b ) { // modulo operator overloading
if( b.size() == 1 && b.a[0] == '0' ) b.a[0] /= ( b.a[0] - 48 );
BigInt c("0");
b.sign = 1;
for( int i = a.size() - 1; i >= 0; i-- ) {
c.a.insert( c.a.begin(), '0');
c = c + a.substr( i, 1 );
while( !( c < b ) ) c = c - b;
}
return c.normalize(sign);
}
// << operator overloading
friend ostream& operator << (ostream&, BigInt const&);
private:
// representations and structures
string a; // to store the digits
int sign; // sign = -1 for negative numbers, sign = 1 otherwise
};
ostream& operator << (ostream& os, BigInt const& obj) {
if( obj.sign == -1 ) os << "-";
for( int i = obj.a.size() - 1; i >= 0; i--) {
os << obj.a[i];
}
return os;
}
BigInt a, b, c;
a = BigInt("1233423523546745312464532");
b = BigInt("45624565434216345i657652454352");
c = a + b;
// c = a * b;
// c = b / a;
// c = b - a;
// c = b % a;
cout << c << endl;
// dynamic memory allocation
BigInt *obj = new BigInt("123");
delete obj;
答案 1 :(得分:3)
如果您没有,可以模仿uint128_t
:
typedef struct uint128_t { uint64_t lo, hi } uint128_t;
...
uint128_t add (uint64_t a, uint64_t b) {
uint128_t r; r.lo = a + b; r.hi = + (r.lo < a); return r; }
uint128_t sub (uint64_t a, uint64_t b) {
uint128_t r; r.lo = a - b; r.hi = - (r.lo > a); return r; }
没有内置编译器或汇编程序支持的乘法更难以正确使用。基本上,你需要将两个被乘数分成hi:lo无符号32位,并执行'long multiplication'处理部分64位乘积之间的进位和'列'。
给定64位参数的除法和模数返回64位结果 - 所以这不是问题,因为你已经定义了问题。将128位除以64位或128位操作数是一项复杂得多的操作,需要进行归一化等等。
GMP中的{p>longlong.h
例程umul_ppmm
和udiv_qrnnd
为多精度/肢体操作提供了“基本”步骤。
答案 2 :(得分:0)
在大多数现代GCC编译器中__int128
支持类型,它可以容纳128位整数。
实施例,
__int128 add(__int128 a, __int128 b){
return a + b;
}