我尝试运行自己的功能" EMGMM(y,startmy = 0)"不同参数并行:
require(snow)
library(parallel)
tasks = list(
job1 = function(y) EMGMM(y=y, startmy = 0),
job2 = function(y) EMGMM(y=y, startmy = 1),
job3 = function(y) EMGMM(y=y, startmy = 2)
)
cl = makeCluster( length(tasks) )
clusterExport(cl, list("EMGMM"))
out = clusterApply(cl, tasks, ????)
stopCluster(cl)
但我现在不必打电话给#34; clusterApply"。 y para在每个作业中都是相同的,startmy是我算法的起始段。
答案 0 :(得分:0)
谢谢:) y是多维随机变量的矩阵
这对我来说很好(它可能不是最好的解决方案):
require(snow)
library(parallel)
tasks = list(
job1 = function(y) EMGMM(y=y, startmy = 0),
job2 = function(y) EMGMM(y=y, startmy = 1),
job3 = function(y) EMGMM(y=y, startmy = 2)
)
cl = makeCluster( length(tasks) )
clusterExport(cl, ls())
clusterExport(cl, "dmvnorm") #needed in EMGMM()
out = clusterApply(cl, tasks, function(f) f(y))
stopCluster(cl)