我在python中编写一个用于处理NetCDF文件的脚本,但是我在创建变量时面临一些问题,这里是代码的一部分:
stepnumber_var = ofl.createVariable("step_number", "i",("step_number",))
stepnumber_var.standard_name = "step_number"
atomNumber_var = ofl.createVariable("atom_number", "i", ("atom_number",))
atomNumber_var.standard_name = "atom__number"
但是给了我这个错误:
Traceback (most recent call last):
File "sub_avg.py", line 141, in <module>
atomNumber_var = ofl.createVariable("atom_number", "i", ("atom_number",))
IOError: netcdf: NetCDF: Invalid dimension ID or name
我的问题是,为什么创建第一个变量没有任何问题,第二个变量不起作用?
由于
这是完整的代码
from array import array
import os
import sys
import math
import string as st
import numpy as N
from Scientific.IO.NetCDF import NetCDFFile as S
if len(sys.argv) < 2:
sys.exit( "No input file found. \nPlease privide NetCDF trajectory input file" )
#######################
## Open NetCDF file ###
#######################
infl = S(sys.argv[1], 'r')
file = sys.argv[1]
title,ext = file.split(".")
#for v in infl.variables: # Lists the variables in file
# print(v)
#################################################################################
# Variable "configurations" has the structure [step_number, atom_number, x y z] #
#################################################################################
varShape = infl.variables['configuration'].shape # This gets the shape of the variable, i.e. the dimension in terms of elements
nSteps = varShape[0]
nAtoms = varShape[1]
coordX_atom = N.zeros((nSteps,nAtoms))
coordY_atom = N.zeros((nSteps,nAtoms))
coordZ_atom = N.zeros((nSteps,nAtoms))
sumX = [0] * nAtoms
sumY = [0] * nAtoms
sumZ = [0] * nAtoms
######################################################
# 1) Calculate the average structure fron trajectory #
######################################################
for i in range(0, 3):
for j in range(0, 3):
coordX_atom[i][j] = infl.variables["configuration"][i,j,0]
coordY_atom[i][j] = infl.variables["configuration"][i,j,1]
coordZ_atom[i][j] = infl.variables["configuration"][i,j,2]
sumX[j] = sumX[j] + coordX_atom[i][j]
sumY[j] = sumY[j] + coordY_atom[i][j]
sumZ[j] = sumZ[j] + coordZ_atom[i][j]
avgX = [0] * nAtoms
avgY = [0] * nAtoms
avgZ = [0] * nAtoms
for j in range(0, 3):
avgX[j] = sumX[j]/nSteps
avgY[j] = sumY[j]/nSteps
avgZ[j] = sumZ[j]/nSteps
##############################################################
# 2) Subtract average structure to each atom and for each frame #
##############################################################
for i in range(0, 3):
for j in range(0, 3):
coordX_atom[i][j] = infl.variables["configuration"][i,j,0] - avgX[j]
coordY_atom[i][j] = infl.variables["configuration"][i,j,1] - avgY[j]
coordZ_atom[i][j] = infl.variables["configuration"][i,j,2] - avgZ[j]
#######################################
# 3) Write new NetCDF trajectory file #
#######################################
ofl = S(title + "_subAVG.nc", "a")
############################################################
# Get information of variables contained in the NetCDF input file
#############################################################
i = 0
for v in infl.variables:
varNames = [v for v in infl.variables]
i += 1
#############################################
# Respectively get, elements names in variable, dimension of elements and lenght of the array variableNames
##############################################
for v in infl.variables["box_size"].dimensions:
boxSizeNames = [v for v in infl.variables["box_size"].dimensions]
for v in infl.variables["box_size"].shape:
boxSizeShape = [v for v in infl.variables["box_size"].shape]
boxSizeLenght = boxSizeNames.__len__()
print boxSizeLenght
for v in infl.variables["step"].dimensions:
stepNames = [v for v in infl.variables["step"].dimensions]
for v in infl.variables["step"].shape:
stepShape = [v for v in infl.variables["box_size"].shape]
stepLenght = stepNames.__len__()
print stepLenght
for v in infl.variables["configuration"].dimensions:
configurationNames = [v for v in infl.variables["configuration"].dimensions]
for v in infl.variables["configuration"].shape:
configurationShape = [v for v in infl.variables["configuration"].shape]
configurationLenght = configurationNames.__len__()
print configurationLenght
for v in infl.variables["description"].dimensions:
descriptionNames = [v for v in infl.variables["description"].dimensions]
for v in infl.variables["description"].shape:
descriptionShape = [v for v in infl.variables["description"].shape]
descriptionLenght = descriptionNames.__len__()
print descriptionLenght
for v in infl.variables["time"].dimensions:
timeNames = [v for v in infl.variables["time"].dimensions]
for v in infl.variables["time"].shape:
timeShape = [v for v in infl.variables["time"].shape]
timeLenght = timeNames.__len__()
print timeLenght
#Get Box size
xBox = infl.variables["box_size"][0,0]
yBox = infl.variables["box_size"][0,1]
zBox = infl.variables["box_size"][0,2]
# Get description lenght
description_lenghtLenght = infl.variables["description"][:]
############################################################
# Create Dimensions
############################################################
stepnumber_var = ofl.createVariable("step_number", "i",("step_number",))
stepnumber_var.standard_name = "step_number"
atomNumber_var = ofl.createVariable("atom_number", "i", ("atom_number",))
atomNumber_var.standard_name = "atom__number"
#
#xyz_var = ofl.createVariable("xyz", "f",("xyz",))
#xyz_var.units = "nanometers"
#xyz_var.standard_name = "xyz"
#
#configuration_var = ofl.createVariable("configuration", "f", ("step_number", "atom_number", "xyz"))
#configuration_var.units = "nanometers"
#configuration_var.standard_name = "configuration"
#
#print configuration_var.shape
#step_var = ofl.createVariable("box_size_lenght", 3)
#configuration_var = ofl.createVariable("atom_number", nAtoms)
#description_var = ofl.createVariable("xyz", 3)
#time_var = ofl.createVariable(description_lenght, description_lenghtLenght)
#
#a = infl.variables["step_number"].dimensions.keys()
#print a
谢谢!
答案 0 :(得分:3)
这可能是一个图书馆试图成为&#34;有用的情况&#34; (有关详细信息,请参阅我的帖子的结尾,但我无法确认)。要解决此问题,您应该在创建变量之前使用以下内容显式创建atom_number和step_number的维度(假设我正确理解nSteps和nAtoms):
ofl.createDimension(&#34; step_number&#34;,nSteps) ofl.createDimension(&#34; atom_number&#34;,nAtoms)
如果您是netCDF的新手,我建议您查看netcdf4-python包,
http://unidata.github.io/netcdf4-python/
在scipy中找到的netCDF包的:
http://docs.scipy.org/doc/scipy/reference/io.html
可能会发生什么:看起来问题在于,当您创建变量step_number时,库正在尝试通过创建具有无限长度的step_number维度来提供帮助。但是,你只能在netcdf-3文件中拥有一个无限维度,所以有用的&#34;技巧&#34;不起作用。
答案 1 :(得分:0)
atomNumber_var.standard_name =“atom__number”
atom__number有两个“__”而不是一个“_”。我不确定这是不是你的问题,但可能需要注意一下。
我还建议让你的netcdf文件更清晰。我喜欢把它们分成3个步骤。我使用了海洋sst的科学数据的例子。您还有一个用于创建尺寸的部分,但实际上并没有这样做。这更正确地创建变量部分。
创建维度
创建变量
填写变量
from netCDF4 import Dataset
ncfile = Dataset('temp.nc','w')
lonsdim = latdata.shape #Set dimension lengths
latsdim = londata.shape
###############
#Create Dimensions
###############
latdim = ncfile.createDimension('latitude', latsdim)
londim = ncfile.createDimension('longitude', lonsdim)
###############
#Create Variables
################# The variables contain the dimensions previously set
latitude = ncfile.createVariable('latitude','f8',('latitude'))
longitude = ncfile.createVariable('longitude','f8',('longitude'))
oceantemp = ncfile.createVariable('SST','f4' ('latitude','longitude'),fill_value=-99999.0)
###############
Fill Variables
################
latitude[:] = latdata #lat data to fill in
longitude[:] = londata #lon data to fill in
oceantemp[:,:] = sst[:,:] #some variable previous calculated
我希望这有用。