嗨,我在Hadoop已经有一周的时间了,并试验过它。
我将以下输入值设为CSV。
PRAVEEN,400201399,Baby,026A1K,12/04/2010
PRAVEEN,4002013410,TOY,02038L,1/04/2014
PRAVEEN,2727272727272,abc,03383,03/14/2015
PRAVEEN,2263637373,cde,7373737,12/24/2012
Map函数应该从CSV中选择第二个值作为键(即400201399等),将第三个和最后一个值作为VALUE(例如TOY和12/04/2010),我想将值放入一个ArrayList而不是Text。
但我收到以下错误 -
Error: java.io.IOException: Type mismatch in value from map: expected org.apache.hadoop.io.Text, received java.util.ArrayList
Reduce函数也很简单,我必须遍历列表并获得所需的结果作为最终值(在下面的reduce代码中我只选择列表中的日期)
这是我的代码 -
package com.test.mapreduce;
import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.ArrayWritable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class RetailCustomerProduct extends Configured implements Tool {
public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, List<Text> > {
private Text key1 = new Text();
private List<Text> productList = new ArrayList<Text>();
private Text value1 = new Text();
private Text product = new Text();
private int noofFields = 5;
public void map(LongWritable key, Text value,
OutputCollector<Text, List<Text>> output,
Reporter reporter) throws IOException {
String line = value.toString().replaceAll("\\s+","");
String[] split = line.split(",");
if(split.length!=noofFields){
return;
}
else {
key1.set((split[1]));
value1.set(split[4].toString().trim());
product.set(split[2].toString().trim());
productList.add(value1);
productList.add(product);
System.out.println(split[4].toString().trim());
output.collect(key1, productList);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, List<Text>, Text, Text> {
public void reduce(Text key, Iterator<List<Text>> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException {
SimpleDateFormat formatter = new SimpleDateFormat("MM/dd/yyyy");
Date date = new Date();
List<String> dateList = new ArrayList<String>();
List<String> productList = new ArrayList<String>();
for(Iterator<List<Text>> it = values; it.hasNext();) {
// add the values in the arrayList
dateList.add(((Text)it.next().get(0)).toString());
productList.add(((Text)it.next().get(1)).toString());
}
if(dateList.size()==1){
try {
date = formatter.parse(dateList.get(0).toString());
} catch (ParseException e) {
e.printStackTrace();
}
}
else {
String str = dateList.get(0).toString();
try {
date = formatter.parse(dateList.get(0).toString());
} catch (ParseException e1) {
e1.printStackTrace();
}
for(int i=0 ; i <dateList.size();++i){
try {
if((formatter.parse(dateList.get(i).toString())).compareTo(date)>0){
date=formatter.parse(dateList.get(i).toString());
// getting the max date from the list
}
}
catch (ParseException e) {
e.printStackTrace();
}
}
}
Text value = new Text(date.toString());
output.collect(key, value);
}
}
public int run(String[] args) throws Exception {
Configuration conf = getConf();
JobConf job = new JobConf(conf, RetailCustomerProduct.class);
Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
job.setJobName("RetailCustomerProduct");
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class);
job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.set("key.value.separator.in.input.line", ",");
JobClient.runJob(job);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new RetailCustomerProduct(), args);
System.exit(res);
}
}
hadoop中有没有不同的ArrayList实现?
我的Map函数应将Longwritable作为KEY,将Text作为VALUE,并将Text作为KEY输出,将ArrayList作为VALUE输出。
My Reduce函数应接受Text为KEY,ArrayList为Value,然后将Text输出为KEY,将Text输出为VALUE。
所以在驱动程序类中,必须包含哪些类,目前就是这样。
job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
任何人都可以帮助使用正确的代码吗?
答案 0 :(得分:0)
我也是Hadoop的新手。但我认为这就是问题所在:
job.setOutputValueClass(Text.class);
这会将输出类型设置为Text
,而不是List<Text>
。
我还没有尝试输出列表。相反,我从列表中构建一个制表符分隔的字符串,并将其作为Text的实例输出。
new Text(split[4].toString().trim() + "\t" + split[2].toString().trim());