如何在python中计算点过程的残差

时间:2014-07-16 16:04:46

标签: python r statistics scipy stochastic-process

我试图在python中重现http://jheusser.github.io/2013/09/08/hawkes.html的工作,除了不同的数据。我编写了代码来模拟泊松过程以及他们描述的霍克斯过程。

要做霍克斯模型MLE,我将对数似然函数定义为

def loglikelihood(params, data):
    (mu, alpha, beta) = params
    tlist = np.array(data)
    r = np.zeros(len(tlist))
    for i in xrange(1,len(tlist)):
        r[i] = math.exp(-beta*(tlist[i]-tlist[i-1]))*(1+r[i-1])
    loglik  = -tlist[-1]*mu
    loglik = loglik+alpha/beta*sum(np.exp(-beta*(tlist[-1]-tlist))-1)
    loglik = loglik+np.sum(np.log(mu+alpha*r))
    return -loglik

使用一些虚拟数据,我们可以使用

计算Hawkes过程的MLE
atimes=[58.98353497,   59.28420225,   59.71571013,   60.06750179,   61.24794134,
61.70692463,   61.73611983,   62.28593814,   62.51691723,   63.17370423
,63.20125152,   65.34092403,  214.24934446,  217.0390236,   312.18830525,
319.38385604,  320.31758188,  323.50201334,  323.76801537,  323.9417007]

res = minimize(loglikelihood, (0.01, 0.1,0.1),method='Nelder-Mead',args = (atimes,))
print res

但是,我不知道如何在python中执行以下操作。

  1. 我如何才能获得相同的evalCIF来获得类似的拟合与经验强度图?
  2. 如何计算Hawkes模型的残差,使其等效于他们拥有的QQ图。他们说他们使用一个名为ptproc的R包但我找不到python等价物。

1 个答案:

答案 0 :(得分:10)

好的,所以你可能希望做的第一件事就是绘制数据。为了简单起见,我已经复制了this figure,因为它只发生了8个事件,因此很容易看到系统的行为。以下代码:

import numpy as np
import math, matplotlib
import matplotlib.pyplot
import matplotlib.lines

mu = 0.1 # Parameter values as found in the article http://jheusser.github.io/2013/09/08/hawkes.html Hawkes Process section.
alpha = 1.0
beta = 0.5

EventTimes = np.array([0.7, 1.2, 2.0, 3.8, 7.1, 8.2, 8.9, 9.0])

" Compute conditional intensities for all times using the Hawkes process. "
timesOfInterest = np.linspace(0.0, 10.0, 100) # Times where the intensity will be sampled.
conditionalIntensities = [] # Conditional intensity for every epoch of interest.
for t in timesOfInterest:
     conditionalIntensities.append( mu + np.array( [alpha*math.exp(-beta*(t-ti)) if t > ti else 0.0 for ti in EventTimes] ).sum() ) # Find the contributions of all preceding events to the overall chance of another one occurring. All events that occur after t have no contribution.

" Plot the conditional intensity time history. "
fig = matplotlib.pyplot.figure()
ax = fig.gca()

labelsFontSize = 16
ticksFontSize = 14

fig.suptitle(r"$Conditional\ intensity\ VS\ time$", fontsize=20)
ax.grid(True)
ax.set_xlabel(r'$Time$',fontsize=labelsFontSize)
ax.set_ylabel(r'$\lambda$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

eventsScatter = ax.scatter(EventTimes,np.ones(len(EventTimes))) # Just to indicate where the events took place.

ax.plot(timesOfInterest, conditionalIntensities, color='red', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12)
 fittedPlot = matplotlib.lines.Line2D([],[],color='red', linestyle='solid', marker=None,  markerfacecolor='blue', markersize=12)

fig.legend([fittedPlot, eventsScatter], [r'$Conditional\ intensity\ computed\ from\    events$', r'$Events$'])
matplotlib.pyplot.show()

非常准确地再现了这个数字,尽管我已经选择了一些事件时代: Simple Hawkes Process

这也可以通过对数据进行分箱并将每个bin视为事件来应用于5000个交易的example set of data组。但是,现在发生的事情是,每个事件的权重都略有不同,因为每个仓位都会发生不同的交易次数。 在[{3}} 拟合比特币交易到达Hawkes流程部分中也提到了这一点,其中提出了解决此问题的方法:The only difference to the original dataset is that I added a random millisecond timestamp to all trades that share a timestamp with another trade. This is required as the model requires to distinguish every trade (i.e. every trade must have a unique timestamp).这包含在以下代码中:< / p>

import numpy as np
import math, matplotlib, pandas
import scipy.optimize
import matplotlib.pyplot
import matplotlib.lines

" Read example trades' data. "
all_trades = pandas.read_csv('all_trades.csv', parse_dates=[0], index_col=0) # All trades' data.
all_counts = pandas.DataFrame({'counts': np.ones(len(all_trades))}, index=all_trades.index) # Only the count of the trades is really important.
empirical_1min = all_counts.resample('1min', how='sum') # Bin the data so find the number of trades in 1 minute intervals.

baseEventTimes = np.array( range(len(empirical_1min.values)), dtype=np.float64) # Dummy times when the events take place, don't care too much about actual epochs where the bins are placed - this could be scaled to days since epoch, second since epoch and any other measure of time.
eventTimes = [] # With the event batches split into separate events.
for i in range(len(empirical_1min.values)): # Deal with many events occurring at the same time - need to distinguish between them by splitting each batch of events into distinct events taking place at almost the same time.
    if not np.isnan(empirical_1min.values[i]):
        for j in range(empirical_1min.values[i]):
            eventTimes.append(baseEventTimes[i]+0.000001*(j+1)) # For every event that occurrs at this epoch enter a dummy event very close to it in time that will increase the conditional intensity.

eventTimes = np.array( eventTimes, dtype=np.float64 ) # Change to array for ease of operations.

" Find a fit for alpha, beta, and mu that minimises loglikelihood for the input data. "
#res = scipy.optimize.minimize(loglikelihood, (0.01, 0.1,0.1), method='Nelder-Mead', args = (eventTimes,))
#(mu, alpha, beta) =  res.x
mu = 0.07 # Parameter values as found in the article.
alpha = 1.18
beta = 1.79

" Compute conditional intensities for all epochs using the Hawkes process - add more points to see how the effect of individual events decays over time. "
conditionalIntensitiesPlotting = [] # Conditional intensity for every epoch of interest.
 timesOfInterest = np.linspace(eventTimes.min(), eventTimes.max(), eventTimes.size*10) # Times where the intensity will be sampled. Sample at much higher frequency than the events occur at.
for t in timesOfInterest:
    conditionalIntensitiesPlotting.append( mu + np.array( [alpha*math.exp(-beta*(t-ti))   if t > ti else 0.0 for ti in eventTimes] ).sum() ) # Find the contributions of all preceding events to the overall chance of another one occurring. All events that occur after time of interest t have no contribution.

" Compute conditional intensities at the same epochs as the empirical data are known. "
 conditionalIntensities=[] # This will be used in the QQ plot later, has to have the same size as the empirical data.
for t in np.linspace(eventTimes.min(), eventTimes.max(), eventTimes.size):
    conditionalIntensities.append( mu + np.array( [alpha*math.exp(-beta*(t-ti)) if t > ti else 0.0 for ti in eventTimes] ).sum() ) # Use eventTimes here as well to feel the influence of all the events that happen at the same time.

" Plot the empirical and fitted datasets. "
fig = matplotlib.pyplot.figure()
ax = fig.gca()

labelsFontSize = 16
ticksFontSize = 14

fig.suptitle(r"$Conditional\ intensity\ VS\ time$", fontsize=20)
ax.grid(True)
ax.set_xlabel(r'$Time$',fontsize=labelsFontSize)
ax.set_ylabel(r'$\lambda$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

# Plot the empirical binned data.
ax.plot(baseEventTimes,empirical_1min.values, color='blue', linestyle='solid',   marker=None, markerfacecolor='blue', markersize=12)
empiricalPlot = matplotlib.lines.Line2D([],[],color='blue', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12)

# And the fit obtained using the Hawkes function.
ax.plot(timesOfInterest, conditionalIntensitiesPlotting, color='red', linestyle='solid',   marker=None, markerfacecolor='blue', markersize=12)
fittedPlot = matplotlib.lines.Line2D([],[],color='red', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12)

fig.legend([fittedPlot, empiricalPlot], [r'$Fitted\ data$', r'$Empirical\ data$'])
matplotlib.pyplot.show()

这会产生以下拟合图: Hawkes Process with real trades' data 一切看起来都不错,但是当你看到细节时,你会发现通过简单地取一个交易数量的矢量并减去合适的一个来计算残差,因为它们有不同的长度: Hawkes Process with real trades' data Close Up 然而,有可能在与经验数据记录时相同的时期提取强度,然后计算残差。这使您能够找到经验数据和拟合数据的分位数,并将它们相互绘制,从而生成QQ图:

""" GENERATE THE QQ PLOT. """
" Process the data and compute the quantiles. "
orderStatistics=[]; orderStatistics2=[];
for i in range( empirical_1min.values.size ): # Make sure all the NANs are filtered out and both arrays have the same size.
    if not np.isnan( empirical_1min.values[i] ):
        orderStatistics.append(empirical_1min.values[i])
        orderStatistics2.append(conditionalIntensities[i])
orderStatistics = np.array(orderStatistics); orderStatistics2 = np.array(orderStatistics2);

orderStatistics.sort(axis=0) # Need to sort data in ascending order to make a QQ plot.    orderStatistics is a column vector.
 orderStatistics2.sort()

 smapleQuantiles=np.zeros( orderStatistics.size ) # Quantiles of the empirical data.
 smapleQuantiles2=np.zeros( orderStatistics2.size ) # Quantiles of the data fitted using the Hawkes process.
for i in range( orderStatistics.size ):
    temp = int( 100*(i-0.5)/float(smapleQuantiles.size) ) # (i-0.5)/float(smapleQuantiles.size) th quantile. COnvert to % as expected by the numpy  function.
    if temp<0.0:
        temp=0.0 # Avoid having -ve percentiles.
    smapleQuantiles[i] = np.percentile(orderStatistics, temp)
    smapleQuantiles2[i] = np.percentile(orderStatistics2, temp)

" Make the quantile plot of empirical data first. "
fig2 = matplotlib.pyplot.figure()
ax2 = fig2.gca(aspect="equal")

fig2.suptitle(r"$Quantile\ plot$", fontsize=20)
ax2.grid(True)
ax2.set_xlabel(r'$Sample\ fraction\ (\%)$',fontsize=labelsFontSize)
ax2.set_ylabel(r'$Observations$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

distScatter = ax2.scatter(smapleQuantiles, orderStatistics, c='blue', marker='o') # If these are close to the straight line with slope line these points come from a normal distribution.

ax2.plot(smapleQuantiles, smapleQuantiles, color='red', linestyle='solid', marker=None, markerfacecolor='red', markersize=12)
normalDistPlot = matplotlib.lines.Line2D([],[],color='red', linestyle='solid', marker=None, markerfacecolor='red', markersize=12)

fig2.legend([normalDistPlot, distScatter], [r'$Normal\ distribution$', r'$Empirical\ data$'])
 matplotlib.pyplot.show()

" Make a QQ plot. "
fig3 = matplotlib.pyplot.figure()
ax3 = fig3.gca(aspect="equal")

fig3.suptitle(r"$Quantile\ -\ Quantile\ plot$", fontsize=20)
ax3.grid(True)
ax3.set_xlabel(r'$Empirical\ data$',fontsize=labelsFontSize)
ax3.set_ylabel(r'$Data\ fitted\ with\ Hawkes\ distribution$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

distributionScatter = ax3.scatter(smapleQuantiles, smapleQuantiles2, c='blue', marker='x') # If these are close to the straight line with slope line these points come from a normal distribution.

ax3.plot(smapleQuantiles, smapleQuantiles, color='red', linestyle='solid', marker=None,     markerfacecolor='red', markersize=12)
normalDistPlot2 = matplotlib.lines.Line2D([],[],color='red', linestyle='solid',  marker=None, markerfacecolor='red', markersize=12)

fig3.legend([normalDistPlot2, distributionScatter], [r'$Normal\ distribution$', r'$Comparison\ of\ datasets$'])
matplotlib.pyplot.show()

这将生成以下图表: quantile plot of empirical data QQ plot

经验数据的分位数图并不完全the article,我不确定为什么因为我对统计数据不满意。但是,从编程的角度来看,这就是你可以做到这一切的方法。