我有两条线在一点交叉。我知道这两行的终点。如何计算Python中的交叉点?
# Given these endpoints
#line 1
A = [X, Y]
B = [X, Y]
#line 2
C = [X, Y]
D = [X, Y]
# Compute this:
point_of_intersection = [X, Y]
答案 0 :(得分:53)
不能袖手旁观,
所以我们有线性系统:
1 * x + B 1 * y = C 1
A 2 * x + B 2 * y = C 2
让我们用Cramer的规则来做,因此可以在决定因素中找到解决方案:
x = D x / D
y = D y / D
其中 D 是系统的主要决定因素:
可以在matricies中找到1 B 1
A 2 B 2
和 D x 和 D y :
C 1 B 1
C 2 B 2
和
1 C 1
2 C 2
(注意,因为 C 列因此取代了 x 和 y 的系列。)
所以现在python,为了我们的清晰,不要搞砸了让我们在math和python之间进行映射。我们将使用数组L
来存储线方程的coefs A , B , C ,并且相当于{{1} }},x
我们将y
,[0]
,但无论如何。因此,我上面写的内容将在代码中进一步具有以下形式:
D
L1 [0] L1 [1]
L2 [0] L2 [1]
D x
L1 [2] L1 [1]
L2 [2] L2 [1]
D y
L1 [0] L1 [2]
L2 [0] L2 [2]
现在去编码:
[1]
- 通过提供的两点产生线方程的coefs A , B , C ,
line
- 找到coefs提供的两条线的交点(如果有的话)。
intersection
用法示例:
from __future__ import division
def line(p1, p2):
A = (p1[1] - p2[1])
B = (p2[0] - p1[0])
C = (p1[0]*p2[1] - p2[0]*p1[1])
return A, B, -C
def intersection(L1, L2):
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return x,y
else:
return False
答案 1 :(得分:39)
与其他建议不同,这很简短,不使用numpy
之类的外部库。 (并不是说使用其他库是不好的......不需要,特别是对于这么简单的问题。)
def line_intersection(line1, line2):
xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(xdiff, ydiff)
if div == 0:
raise Exception('lines do not intersect')
d = (det(*line1), det(*line2))
x = det(d, xdiff) / div
y = det(d, ydiff) / div
return x, y
print line_intersection((A, B), (C, D))
而且仅供参考,我会使用元组而不是列表来表示你的观点。 E.g。
A = (X, Y)
这只是以下公式的Python音译,其中行是( a1 , a2 )和( b1 , b2 )并且交点 p 。 (如果分母为零,则线条没有唯一的交集。)
答案 2 :(得分:3)
使用以下公式: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
def findIntersection(x1,y1,x2,y2,x3,y3,x4,y4):
px= ( (x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
py= ( (x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
return [px, py]
答案 3 :(得分:2)
这是使用Shapely库的解决方案。 Shapely通常用于GIS,但是对计算几何很有用。我将您的输入从列表更改为元组。
# Given these endpoints
#line 1
A = (X, Y)
B = (X, Y)
#line 2
C = (X, Y)
D = (X, Y)
# Compute this:
point_of_intersection = (X, Y)
import shapely
from shapely.geometry import LineString, Point
line1 = LineString([A, B])
line2 = LineString([C, D])
int_pt = line1.intersection(line2)
point_of_intersection = int_pt.x, int_pt.y
print(point_of_intersection)
答案 4 :(得分:1)
我没有在网上找到直观的解释,所以现在我已经解决了,这是我的解决方案。这是无限的线(我需要的),而不是段。
您可能记得的一些术语:
线被定义为y = mx + b OR y = slope * x + y-intercept
斜率=超过运行= dy / dx =高度/距离
Y轴截距是线与Y轴交叉的位置,其中X = 0
鉴于这些定义,这里有一些功能:
def slope(P1, P2):
# dy/dx
# (y2 - y1) / (x2 - x1)
return(P2[1] - P1[1]) / (P2[0] - P1[0])
def y_intercept(P1, slope):
# y = mx + b
# b = y - mx
# b = P1[1] - slope * P1[0]
return P1[1] - slope * P1[0]
def line_intersect(m1, b1, m2, b2):
if m1 == m2:
print ("These lines are parallel!!!")
return None
# y = mx + b
# Set both lines equal to find the intersection point in the x direction
# m1 * x + b1 = m2 * x + b2
# m1 * x - m2 * x = b2 - b1
# x * (m1 - m2) = b2 - b1
# x = (b2 - b1) / (m1 - m2)
x = (b2 - b1) / (m1 - m2)
# Now solve for y -- use either line, because they are equal here
# y = mx + b
y = m1 * x + b1
return x,y
这是两条(无限)线之间的简单测试:
A1 = [1,1]
A2 = [3,3]
B1 = [1,3]
B2 = [3,1]
slope_A = slope(A1, A2)
slope_B = slope(B1, B2)
y_int_A = y_intercept(A1, slope_A)
y_int_B = y_intercept(B1, slope_B)
print(line_intersect(slope_A, y_int_A, slope_B, y_int_B))
输出:
(2.0, 2.0)
答案 5 :(得分:0)
如果您的行是多点,则可以使用this version.
import numpy as np
import matplotlib.pyplot as plt
"""
Sukhbinder
5 April 2017
Based on:
"""
def _rect_inter_inner(x1,x2):
n1=x1.shape[0]-1
n2=x2.shape[0]-1
X1=np.c_[x1[:-1],x1[1:]]
X2=np.c_[x2[:-1],x2[1:]]
S1=np.tile(X1.min(axis=1),(n2,1)).T
S2=np.tile(X2.max(axis=1),(n1,1))
S3=np.tile(X1.max(axis=1),(n2,1)).T
S4=np.tile(X2.min(axis=1),(n1,1))
return S1,S2,S3,S4
def _rectangle_intersection_(x1,y1,x2,y2):
S1,S2,S3,S4=_rect_inter_inner(x1,x2)
S5,S6,S7,S8=_rect_inter_inner(y1,y2)
C1=np.less_equal(S1,S2)
C2=np.greater_equal(S3,S4)
C3=np.less_equal(S5,S6)
C4=np.greater_equal(S7,S8)
ii,jj=np.nonzero(C1 & C2 & C3 & C4)
return ii,jj
def intersection(x1,y1,x2,y2):
"""
INTERSECTIONS Intersections of curves.
Computes the (x,y) locations where two curves intersect. The curves
can be broken with NaNs or have vertical segments.
usage:
x,y=intersection(x1,y1,x2,y2)
Example:
a, b = 1, 2
phi = np.linspace(3, 10, 100)
x1 = a*phi - b*np.sin(phi)
y1 = a - b*np.cos(phi)
x2=phi
y2=np.sin(phi)+2
x,y=intersection(x1,y1,x2,y2)
plt.plot(x1,y1,c='r')
plt.plot(x2,y2,c='g')
plt.plot(x,y,'*k')
plt.show()
"""
ii,jj=_rectangle_intersection_(x1,y1,x2,y2)
n=len(ii)
dxy1=np.diff(np.c_[x1,y1],axis=0)
dxy2=np.diff(np.c_[x2,y2],axis=0)
T=np.zeros((4,n))
AA=np.zeros((4,4,n))
AA[0:2,2,:]=-1
AA[2:4,3,:]=-1
AA[0::2,0,:]=dxy1[ii,:].T
AA[1::2,1,:]=dxy2[jj,:].T
BB=np.zeros((4,n))
BB[0,:]=-x1[ii].ravel()
BB[1,:]=-x2[jj].ravel()
BB[2,:]=-y1[ii].ravel()
BB[3,:]=-y2[jj].ravel()
for i in range(n):
try:
T[:,i]=np.linalg.solve(AA[:,:,i],BB[:,i])
except:
T[:,i]=np.NaN
in_range= (T[0,:] >=0) & (T[1,:] >=0) & (T[0,:] <=1) & (T[1,:] <=1)
xy0=T[2:,in_range]
xy0=xy0.T
return xy0[:,0],xy0[:,1]
if __name__ == '__main__':
# a piece of a prolate cycloid, and am going to find
a, b = 1, 2
phi = np.linspace(3, 10, 100)
x1 = a*phi - b*np.sin(phi)
y1 = a - b*np.cos(phi)
x2=phi
y2=np.sin(phi)+2
x,y=intersection(x1,y1,x2,y2)
plt.plot(x1,y1,c='r')
plt.plot(x2,y2,c='g')
plt.plot(x,y,'*k')
plt.show()
答案 6 :(得分:0)
我找到的最简洁的解决方案使用的是Sympy:https://www.geeksforgeeks.org/python-sympy-line-intersection-method/
# import sympy and Point, Line
from sympy import Point, Line
p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
l1 = Line(p1, p2)
# using intersection() method
showIntersection = l1.intersection(p3)
print(showIntersection)