我们可以使用python为chi square测试生成列联表吗?

时间:2014-07-15 20:03:36

标签: python statistics scipy statsmodels chi-squared

我正在使用scipy.stats.chi2_contingency方法来获取卡方统计数据。我们需要将频率表即列联表作为参数。但我有一个特征向量,并希望自动生成频率表。我们有这样的功能吗? 我现在这样做:

def contigency_matrix_categorical(data_series,target_series,target_val,indicator_val):
  observed_freq={}
  for targets in target_val:
      observed_freq[targets]={}
      for indicators in indicator_val:
          observed_freq[targets][indicators['val']]=data_series[((target_series==targets)&(data_series==indicators['val']))].count()
  f_obs=[]
  var1=0
  var2=0
  for i in observed_freq:
      var1=var1+1
      var2=0
      for j in observed_freq[i]:
          f_obs.append(observed_freq[i][j]+5)
          var2=var2+1
  arr=np.array(f_obs).reshape(var1,var2)
  c,p,dof,expected=chi2_contingency(arr)
  return {'score':c,'pval':p,'dof':dof}

其中数据系列和目标系列是列值,另外两个是指标的名称。 有人可以帮忙吗? 感谢

1 个答案:

答案 0 :(得分:6)

您可以使用pandas.crosstab从DataFrame生成列联表。来自文档:

  

计算两个(或更多)因子的简单交叉列表。默认情况下,计算因子的频率表,除非传递值数组和聚合函数。

以下是一个用法示例:

import numpy as np
import pandas as pd
from scipy.stats import chi2_contingency

# Some fake data.
n = 5  # Number of samples.
d = 3  # Dimensionality.
c = 2  # Number of categories.
data = np.random.randint(c, size=(n, d))
data = pd.DataFrame(data, columns=['CAT1', 'CAT2', 'CAT3'])

# Contingency table.
contingency = pd.crosstab(data['CAT1'], data['CAT2'])

# Chi-square test of independence.
c, p, dof, expected = chi2_contingency(contingency)

以下data

生成以下contingency

然后,scipy.stats.chi2_contingency(contingency)返回(0.052, 0.819, 1, array([[1.6, 0.4],[2.4, 0.6]]))