我想知道是否可以使用Thrust Library按键排序,而无需创建Vector来存储密钥(动态)。例如,我有以下两个向量:键和值:
vectorKeys: 0, 1, 2, 0, 1, 2, 0, 1, 2
VectorValues: 10, 20, 30, 40, 50, 60, 70, 80, 90
按键排序后:
thrust::sort_by_key(vKeys.begin(), vKeys.end(), vValues.begin());
结果载体是:
vectorKeys: 0, 0, 0, 1, 1, 1, 2, 2, 2
VectorValues: 10, 40, 70, 20, 50, 80, 30, 60, 90
如果可以在不需要vKeys矢量(动态)的情况下sort_by_key,我想知道,所以我可以节省存储它的内存并能够对更多数据进行排序?
最后,我希望用相同的键求和并存储在向量中...是否有更好的方法而不是按键排序,然后按键减少以获得相同的结果?
FinalVector = 120, 150, 180
答案 0 :(得分:3)
原始推力示例you linked对具有行主存储的基础数据集执行了行和。当底层存储是列专业时,你的问题基本上是如何做同样的事情。
我们可以使用基本相同的方法,但我们必须使用排列迭代器将基础列主存储转换为行主存储“动态”。
为此,我们可以借用我描述的编码器here。
这是一个完整的例子:
$ cat t466.cu
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <thrust/sequence.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/permutation_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <iostream>
#define COLS 3
#define ROWS 3
#define DSIZE (COLS*ROWS)
#define INIT 10
#define STEP 10
// convert a linear index to a row index
template <typename T>
struct linear_index_to_row_index : public thrust::unary_function<T,T>
{
T C; // number of columns
__host__ __device__
linear_index_to_row_index(T C) : C(C) {}
__host__ __device__
T operator()(T i)
{
return i % C;
}
};
struct rm2cm_idx_functor : public thrust::unary_function<int, int>
{
int r;
int c;
rm2cm_idx_functor(int _r, int _c) : r(_r), c(_c) {};
__host__ __device__
int operator() (int idx) {
unsigned my_r = idx/c;
unsigned my_c = idx%c;
return (my_c * r) + my_r;
}
};
int main(void)
{
int C = COLS; // number of columns
int R = ROWS; // number of rows
thrust::host_vector<int> h_vals(DSIZE);
// initialize data
thrust::sequence(h_vals.begin(), h_vals.end(), INIT, STEP);
thrust::device_vector<int> vals = h_vals;
std::cout << " Initial data: " << std::endl;
thrust::copy(h_vals.begin(), h_vals.end(), std::ostream_iterator<int>(std::cout, ","));
std::cout << std::endl;
// allocate storage for row sums and indices
thrust::device_vector<int> row_sums(R);
thrust::device_vector<int> row_indices(R);
// compute row sums by summing values with equal row indices
thrust::reduce_by_key
(thrust::make_permutation_iterator(thrust::make_transform_iterator(thrust::counting_iterator<int>(0), linear_index_to_row_index<int>(R)), thrust::make_transform_iterator(thrust::counting_iterator<int>(0), rm2cm_idx_functor(R, C))),
thrust::make_permutation_iterator(thrust::make_transform_iterator(thrust::counting_iterator<int>(0), linear_index_to_row_index<int>(R)) + (R*C), thrust::make_transform_iterator(thrust::counting_iterator<int>(0), rm2cm_idx_functor(R, C)) + (R*C)),
thrust::make_permutation_iterator(vals.begin(), thrust::make_transform_iterator(thrust::counting_iterator<int>(0), rm2cm_idx_functor(R, C))),
row_indices.begin(),
row_sums.begin(),
thrust::equal_to<int>(),
thrust::plus<int>());
// print data
thrust::host_vector<int> h_row_sums = row_sums;
std::cout << " Results: " << std::endl;
thrust::copy(h_row_sums.begin(), h_row_sums.end(), std::ostream_iterator<int>(std::cout, ","));
std::cout << std::endl;
return 0;
}
$ nvcc -arch=sm_20 -o t466 t466.cu
$ ./t466
Initial data:
10,20,30,40,50,60,70,80,90,
Results:
120,150,180,
$
请注意,我还更改了linear_index_to_row_index
仿函数,为我提供了适合基础列主要存储的行索引(前面的仿函数在假设基础存储时返回了索引成为行主要)。这只涉及将除法运算更改为模运算并传递R
而不是C
来初始化仿函数,因此请注意细微差别。