使用Pandas计算和绘制计数比率

时间:2014-07-07 14:35:42

标签: python matplotlib pandas

我在pandas数据框中有多维数据,其中一个变量指示类。例如,这是我尝试使用差地图热图散点图:

import pandas as pd
import random
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap

nrows=1000
df=pd.DataFrame([[random.random(), random.random()]+[random.randint(0, 1)] for _ in range(nrows)],
                 columns=list("ABC"))

bins=np.linspace(0, 1, 20)           
df["Abin"]=[bins[i-1] for i in np.digitize(df.A, bins)]
df["Bbin"]=[bins[i-1] for i in np.digitize(df.B, bins)]

g=df.ix[:,["Abin", "Bbin"]+["C"]].groupby(["Abin", "Bbin"])
data=g.agg(["sum", "count"])
data.reset_index(inplace=True)
data["classratio"]=data[("C", "sum")]/data[("C","count")]

plt.scatter(data.Abin, data.Bbin, c=data.classratio, cmap=get_cmap("RdYlGn_r"), marker="s")

我想在分类功能上绘制类密度。现在我使用np.digitize进行分级,并使用一些复杂的Python手工密度计算来绘制热图。

当然,这可以通过Pandas(枢轴?)更紧凑地完成?你知道一个简洁的方法来将这两个特征(例如,间隔0 ... 1上的10个区间)分开,然后绘制一个类密度热图,其中颜色表示此2D区域中1和总行的比率吗?

1 个答案:

答案 0 :(得分:3)

是的,可以使用cut函数中的构建以非常简洁的方式完成:

在[65]中:

nrows=1000
df=pd.DataFrame([[random.random(), random.random()]+[random.randint(0, 1)] for _ in range(nrows)],
                 columns=list("ABC"))
In [66]:
#This does the trick.
pd.crosstab(np.array(pd.cut(df.A, 20)), np.array(pd.cut(df.B, 20))).values
Out[66]:
array([[2, 2, 2, 2, 7, 2, 3, 5, 1, 4, 2, 2, 1, 3, 2, 1, 7, 2, 4, 2],
       [1, 2, 4, 2, 0, 3, 3, 3, 1, 1, 2, 1, 4, 3, 2, 1, 1, 2, 2, 1],
       [0, 4, 1, 3, 1, 3, 2, 5, 2, 3, 1, 1, 1, 4, 2, 3, 6, 5, 2, 2],
       [5, 2, 3, 2, 2, 1, 3, 2, 4, 0, 3, 2, 0, 4, 3, 2, 1, 3, 1, 3],
       [2, 2, 4, 1, 3, 2, 2, 4, 1, 4, 3, 5, 5, 2, 3, 3, 0, 2, 4, 0],
       [2, 3, 3, 5, 2, 0, 5, 3, 2, 3, 1, 2, 5, 4, 4, 3, 4, 3, 6, 4],
       [3, 2, 2, 4, 3, 3, 2, 0, 0, 4, 3, 2, 2, 5, 4, 0, 1, 2, 2, 3],
       [0, 0, 4, 4, 3, 2, 4, 6, 4, 2, 0, 5, 2, 2, 1, 3, 4, 4, 3, 2],
       [3, 2, 2, 3, 4, 2, 1, 3, 1, 3, 4, 2, 4, 3, 2, 3, 2, 3, 4, 4],
       [0, 1, 1, 4, 1, 4, 3, 0, 1, 1, 1, 2, 6, 4, 3, 5, 3, 3, 1, 4],
       [2, 2, 4, 1, 3, 4, 1, 2, 1, 3, 3, 3, 1, 2, 1, 5, 2, 1, 4, 3],
       [0, 0, 0, 4, 2, 0, 2, 3, 2, 2, 2, 4, 4, 2, 3, 2, 1, 2, 1, 0],
       [3, 3, 0, 3, 1, 5, 1, 1, 2, 5, 6, 5, 0, 0, 3, 2, 1, 5, 7, 2],
       [3, 3, 2, 1, 2, 2, 2, 2, 4, 0, 1, 3, 3, 1, 5, 6, 1, 3, 2, 2],
       [3, 0, 3, 4, 3, 2, 1, 4, 2, 3, 4, 0, 5, 3, 2, 2, 4, 3, 0, 2],
       [0, 3, 2, 2, 1, 5, 1, 4, 3, 1, 2, 2, 3, 5, 1, 2, 2, 2, 1, 2],
       [1, 3, 2, 1, 1, 4, 4, 3, 2, 2, 5, 5, 1, 0, 1, 0, 4, 3, 3, 2],
       [2, 2, 2, 1, 1, 3, 1, 6, 5, 2, 5, 2, 3, 4, 2, 2, 1, 1, 4, 0],
       [3, 3, 4, 7, 0, 2, 6, 4, 1, 3, 4, 4, 1, 4, 1, 1, 2, 1, 3, 2],
       [3, 6, 3, 4, 1, 3, 1, 3, 3, 1, 6, 2, 2, 2, 1, 1, 4, 4, 0, 4]])
In [67]:

abins=np.linspace(df.A.min(), df.A.max(), 21)
bbins=np.linspace(df.B.min(), df.B.max(), 21)
Z=pd.crosstab(np.array(pd.cut(df.ix[df.C==1, 'A'], abins)), 
            np.array(pd.cut(df.ix[df.C==1, 'B'], bbins)), aggfunc=np.mean).div(
            pd.crosstab(np.array(pd.cut(df.A, abins)), 
                        np.array(pd.cut(df.B, bbins)), aggfunc=np.mean)).values
Z = np.ma.masked_where(np.isinf(Z),Z)
x=np.linspace(df.A.min(), df.A.max(), 20)
y=np.linspace(df.B.min(), df.B.max(), 20)
X,Y=np.meshgrid(x, y)
plt.contourf(X, Y, Z, vmin=0, vmax=1)
plt.colorbar()

enter image description here

plt.pcolormesh(X, Y, Z, vmin=0, vmax=1)
plt.colorbar()

enter image description here