汇编:第一首曲目后无法读取扇区

时间:2014-07-05 16:39:49

标签: gcc x86 inline-assembly bios floppy

作为我操作系统的一部分,我编写了这个读取扇区函数。

从BIOS设备ID读取扇区地址。但是当我设置从扇区19(Head:0,Track:1,Sector 2)读取时,0x1000:0x0000的结果可能超过该扇区(我用十六进制查看器检查了几次)。

另外,当我读取多个扇区,以便包含扇区19时,在上面提到的地址,我可以读取扇区19,它被复制在0x1000:(512 * 19)而没有问题。

void __NOINLINE resetDisk(const int device_id) {
    __asm__ __volatile__("" : : "d"(0x0000|device_id)); //set device id
    __asm__ __volatile__("mov $0x0000,%ax"); //function 0x02
    __asm__ __volatile__("int $0x13");
}

void __NOINLINE readDiskSector(const int sector, const int device_id) {
    resetDisk(device_id);

    int sector_count = 2880;
    int heads = 2;
    int tracks = 18;

    int h = sector/(sector_count/heads);
    int c = (sector-h*(sector_count/heads))/tracks;
    int s = sector-c*tracks-h*(sector_count/heads)+1;

    __asm__ __volatile__("push %es");

    __asm__ __volatile__("" : : "a"(c));
    __asm__ __volatile__("" : : "b"(s));
    __asm__ __volatile__("mov %al,%ch");
    __asm__ __volatile__("mov %bl,%cl");
    __asm__ __volatile__("" : : "a"(h));
    __asm__ __volatile__("" : : "b"(device_id));
    __asm__ __volatile__("mov %al,%dh");
    __asm__ __volatile__("mov %bl,%dl");

    __asm__ __volatile__("mov $0x03,%si");
    __asm__ __volatile__("try_again_reading:");
    __asm__ __volatile__("cmp $0x00,%si");
    __asm__ __volatile__("je stop_trying");
    __asm__ __volatile__("mov $0x1000,%bx");
    __asm__ __volatile__("mov %bx,%es");
    __asm__ __volatile__("mov $0x0000,%bx");
    __asm__ __volatile__("mov $0x02,%ah");
    __asm__ __volatile__("mov $0x01,%al");
    __asm__ __volatile__("int $0x13");
    __asm__ __volatile__("dec %si");
    __asm__ __volatile__("jc try_again_reading");
    __asm__ __volatile__("stop_trying:");
    __asm__ __volatile__("pop %es");
}

2 个答案:

答案 0 :(得分:1)

从正确的GCC基本内联汇编和扩展内联汇编的角度来看,该代码存在一些严重问题,但是从根本上讲,计算中涉及访问逻辑块地址19(LBA)的问题。 LBA 19是 CHS (圆柱体,头部,扇区)=(0,1,2),其中OP表示它是(头部:0,轨迹:1 ,Sector 2)这是不正确的。

Int 13h/ah=2采用 CHS 值。您可以使用以下公式(或等效公式)将 LBA 转换为 CHS 值:

C = (LBA ÷ SPT) ÷ HPC
H = (LBA ÷ SPT) mod HPC
S = (LBA mod SPT) + 1

HPC = Heads per cylinder (aka Number of Heads)
SPT = Sectors per Track, 
LBA = logical block address

"mod" is the modulo operator (to get the remainder of a division)

我在将LBA转换为CHS 的其他Stackoverflow answer中已经写了关于 LBA CHS 计算的更多信息。

一个观察结果是,最大扇区数根本不计入方程式。真正的问题是OP的公式不正确:

int sector_count = 2880;
int heads = 2;   /* Head per cylinder */
int tracks = 18; /* Sectors per Track */

int h = sector/(sector_count/heads);
int c = (sector-h*(sector_count/heads))/tracks;
int s = sector-c*tracks-h*(sector_count/heads)+1;

方程式中唯一能产生正确结果(以一轮回合的方式)的部分是s(扇区)。 c(圆柱)和h(头)的计算不正确。因此,这导致了问题和OP的后续回答中观察到的问题。为了了解由OP方程产生的值,我编写了一个程序,使用适当的公式将其值与正确的值进行比较:

LBA =    0:   CHS = ( 0,  0,  1)    |    CHS = ( 0,  0,  1)
LBA =    1:   CHS = ( 0,  0,  2)    |    CHS = ( 0,  0,  2)
LBA =    2:   CHS = ( 0,  0,  3)    |    CHS = ( 0,  0,  3)
LBA =    3:   CHS = ( 0,  0,  4)    |    CHS = ( 0,  0,  4)
LBA =    4:   CHS = ( 0,  0,  5)    |    CHS = ( 0,  0,  5)
LBA =    5:   CHS = ( 0,  0,  6)    |    CHS = ( 0,  0,  6)
LBA =    6:   CHS = ( 0,  0,  7)    |    CHS = ( 0,  0,  7)
LBA =    7:   CHS = ( 0,  0,  8)    |    CHS = ( 0,  0,  8)
LBA =    8:   CHS = ( 0,  0,  9)    |    CHS = ( 0,  0,  9)
LBA =    9:   CHS = ( 0,  0, 10)    |    CHS = ( 0,  0, 10)
LBA =   10:   CHS = ( 0,  0, 11)    |    CHS = ( 0,  0, 11)
LBA =   11:   CHS = ( 0,  0, 12)    |    CHS = ( 0,  0, 12)
LBA =   12:   CHS = ( 0,  0, 13)    |    CHS = ( 0,  0, 13)
LBA =   13:   CHS = ( 0,  0, 14)    |    CHS = ( 0,  0, 14)
LBA =   14:   CHS = ( 0,  0, 15)    |    CHS = ( 0,  0, 15)
LBA =   15:   CHS = ( 0,  0, 16)    |    CHS = ( 0,  0, 16)
LBA =   16:   CHS = ( 0,  0, 17)    |    CHS = ( 0,  0, 17)
LBA =   17:   CHS = ( 0,  0, 18)    |    CHS = ( 0,  0, 18)
LBA =   18:   CHS = ( 1,  0,  1)    |    CHS = ( 0,  1,  1)
LBA =   19:   CHS = ( 1,  0,  2)    |    CHS = ( 0,  1,  2)
LBA =   20:   CHS = ( 1,  0,  3)    |    CHS = ( 0,  1,  3)
LBA =   21:   CHS = ( 1,  0,  4)    |    CHS = ( 0,  1,  4)
LBA =   22:   CHS = ( 1,  0,  5)    |    CHS = ( 0,  1,  5)
LBA =   23:   CHS = ( 1,  0,  6)    |    CHS = ( 0,  1,  6)
LBA =   24:   CHS = ( 1,  0,  7)    |    CHS = ( 0,  1,  7)
LBA =   25:   CHS = ( 1,  0,  8)    |    CHS = ( 0,  1,  8)
LBA =   26:   CHS = ( 1,  0,  9)    |    CHS = ( 0,  1,  9)
LBA =   27:   CHS = ( 1,  0, 10)    |    CHS = ( 0,  1, 10)
LBA =   28:   CHS = ( 1,  0, 11)    |    CHS = ( 0,  1, 11)
LBA =   29:   CHS = ( 1,  0, 12)    |    CHS = ( 0,  1, 12)
LBA =   30:   CHS = ( 1,  0, 13)    |    CHS = ( 0,  1, 13)
LBA =   31:   CHS = ( 1,  0, 14)    |    CHS = ( 0,  1, 14)
LBA =   32:   CHS = ( 1,  0, 15)    |    CHS = ( 0,  1, 15)
LBA =   33:   CHS = ( 1,  0, 16)    |    CHS = ( 0,  1, 16)
LBA =   34:   CHS = ( 1,  0, 17)    |    CHS = ( 0,  1, 17)
LBA =   35:   CHS = ( 1,  0, 18)    |    CHS = ( 0,  1, 18)
LBA =   36:   CHS = ( 2,  0,  1)    |    CHS = ( 1,  0,  1)
LBA =   37:   CHS = ( 2,  0,  2)    |    CHS = ( 1,  0,  2)
LBA =   38:   CHS = ( 2,  0,  3)    |    CHS = ( 1,  0,  3)
LBA =   39:   CHS = ( 2,  0,  4)    |    CHS = ( 1,  0,  4)
LBA =   40:   CHS = ( 2,  0,  5)    |    CHS = ( 1,  0,  5)
LBA =   41:   CHS = ( 2,  0,  6)    |    CHS = ( 1,  0,  6)
LBA =   42:   CHS = ( 2,  0,  7)    |    CHS = ( 1,  0,  7)
LBA =   43:   CHS = ( 2,  0,  8)    |    CHS = ( 1,  0,  8)
LBA =   44:   CHS = ( 2,  0,  9)    |    CHS = ( 1,  0,  9)
LBA =   45:   CHS = ( 2,  0, 10)    |    CHS = ( 1,  0, 10)
LBA =   46:   CHS = ( 2,  0, 11)    |    CHS = ( 1,  0, 11)
LBA =   47:   CHS = ( 2,  0, 12)    |    CHS = ( 1,  0, 12)
LBA =   48:   CHS = ( 2,  0, 13)    |    CHS = ( 1,  0, 13)
LBA =   49:   CHS = ( 2,  0, 14)    |    CHS = ( 1,  0, 14)
LBA =   50:   CHS = ( 2,  0, 15)    |    CHS = ( 1,  0, 15)
LBA =   51:   CHS = ( 2,  0, 16)    |    CHS = ( 1,  0, 16)
LBA =   52:   CHS = ( 2,  0, 17)    |    CHS = ( 1,  0, 17)
LBA =   53:   CHS = ( 2,  0, 18)    |    CHS = ( 1,  0, 18)
LBA =   54:   CHS = ( 3,  0,  1)    |    CHS = ( 1,  1,  1)
LBA =   55:   CHS = ( 3,  0,  2)    |    CHS = ( 1,  1,  2)
LBA =   56:   CHS = ( 3,  0,  3)    |    CHS = ( 1,  1,  3)
LBA =   57:   CHS = ( 3,  0,  4)    |    CHS = ( 1,  1,  4)
LBA =   58:   CHS = ( 3,  0,  5)    |    CHS = ( 1,  1,  5)
LBA =   59:   CHS = ( 3,  0,  6)    |    CHS = ( 1,  1,  6)
LBA =   60:   CHS = ( 3,  0,  7)    |    CHS = ( 1,  1,  7)
LBA =   61:   CHS = ( 3,  0,  8)    |    CHS = ( 1,  1,  8)
LBA =   62:   CHS = ( 3,  0,  9)    |    CHS = ( 1,  1,  9)
LBA =   63:   CHS = ( 3,  0, 10)    |    CHS = ( 1,  1, 10)
LBA =   64:   CHS = ( 3,  0, 11)    |    CHS = ( 1,  1, 11)
LBA =   65:   CHS = ( 3,  0, 12)    |    CHS = ( 1,  1, 12)
LBA =   66:   CHS = ( 3,  0, 13)    |    CHS = ( 1,  1, 13)
LBA =   67:   CHS = ( 3,  0, 14)    |    CHS = ( 1,  1, 14)
LBA =   68:   CHS = ( 3,  0, 15)    |    CHS = ( 1,  1, 15)
LBA =   69:   CHS = ( 3,  0, 16)    |    CHS = ( 1,  1, 16)
LBA =   70:   CHS = ( 3,  0, 17)    |    CHS = ( 1,  1, 17)
LBA =   71:   CHS = ( 3,  0, 18)    |    CHS = ( 1,  1, 18)
LBA =   72:   CHS = ( 4,  0,  1)    |    CHS = ( 2,  0,  1)
LBA =   73:   CHS = ( 4,  0,  2)    |    CHS = ( 2,  0,  2)
LBA =   74:   CHS = ( 4,  0,  3)    |    CHS = ( 2,  0,  3)
LBA =   75:   CHS = ( 4,  0,  4)    |    CHS = ( 2,  0,  4)
LBA =   76:   CHS = ( 4,  0,  5)    |    CHS = ( 2,  0,  5)
LBA =   77:   CHS = ( 4,  0,  6)    |    CHS = ( 2,  0,  6)
LBA =   78:   CHS = ( 4,  0,  7)    |    CHS = ( 2,  0,  7)
LBA =   79:   CHS = ( 4,  0,  8)    |    CHS = ( 2,  0,  8)
...

OP的结果在左侧,正确的结果在右侧。 LBA 0到 LBA 17是正确的。如果您开始读取 LBA 小于18的一个或多个扇区,那将是正确的。如果使用为 LBA 19计算的 CHS 值,则它们是错误的。

OP在他们的答案中建议,气缸和缸盖值的文档不正确,并且寄存器已颠倒。该文档是正确的:

AL = number of sectors to read (must be nonzero)
CH = low eight bits of cylinder number
CL = sector number 1-63 (bits 0-5)
high two bits of cylinder (bits 6-7, hard disk only)
DH = head number
DL = drive number (bit 7 set for hard disk)
ES:BX -> data buffer

OP的答案表明一种解决方法是更换磁头和磁头。实际上,这偶然使他的代码对于 LBA 0到 LBA 35起作用。 LBA > = 36是不正确的。

解决方法是在OP的代码中使用适当的计算:

c = (sector / tracks) / heads;
h = (sector / tracks) % heads;
s = (sector % tracks) + 1;

测试LBA至CHS方程的代码

#include <stdio.h>

int main()
{
    const int sector_count = 2880;
    const int heads = 2;
    const int tracks = 18; /* tracks per sector */

    unsigned char h, h2;
    unsigned char c, c2;
    unsigned char s, s2;

    int sector; /* LBA */
    for (sector=0; sector < sector_count; sector++) {
        /* Improper calculation */
        h = sector/(sector_count/heads);
        c = (sector-h*(sector_count/heads))/tracks;
        s = sector-c*tracks-h*(sector_count/heads)+1;

        /* Proper calculation */
        c2 = (sector / tracks) / heads;
        h2 = (sector / tracks) % heads;
        s2 = (sector % tracks) + 1;

        printf ("LBA = %4d:   CHS = (%2d, %2d, %2d)    |    CHS = (%2d, %2d, %2d)\n",
                sector, c, h, s, c2, h2, s2);
    }
    return 0;
}

使用内联汇编示例GCC代码进行磁盘读取

biosdisk.h

#ifndef BIOSDISK_H
#define BIOSDISK_H

#include <stdint.h>

/* BIOS Parameter Block (BPB) on floppy media */
typedef struct __attribute__((packed)) {
    char     OEMname[8];
    uint16_t bytesPerSector;
    uint8_t  sectPerCluster;
    uint16_t reservedSectors;
    uint8_t  numFAT;
    uint16_t numRootDirEntries;
    uint16_t numSectors;
    uint8_t  mediaType;
    uint16_t numFATsectors;
    uint16_t sectorsPerTrack;
    uint16_t numHeads;
    uint32_t numHiddenSectors;
    uint32_t numSectorsHuge;
    uint8_t  driveNum;
    uint8_t  reserved;
    uint8_t  signature;
    uint32_t volumeID;
    char     volumeLabel[11];
    char     fileSysType[8];
} disk_bpb_s;

/* State information for CHS disk accesses */
typedef struct __attribute__((packed)) {
    uint16_t segment;
    uint16_t offset;
    uint16_t status;
    /* Drive geometry needed to compute CHS from LBA */
    uint16_t sectorsPerTrack;
    uint16_t numHeads;
    /* Disk parameters */
    uint16_t cylinder;
    uint8_t  head;
    uint8_t  sector;
    uint8_t  driveNum;
    uint8_t  numSectors;    /* # of sectors to read */
    /* Number of retries for disk operations */
    uint8_t  retries;
} disk_info_s;

extern fastcall uint8_t
reset_disk (disk_info_s *const disk_info);
extern fastcall uint8_t
read_sector_chs (disk_info_s *const disk_info);

/* Forced inline version of reset_sector */
static inline fastcall always_inline uint8_t
reset_disk_i (disk_info_s *const disk_info)
{
    uint16_t temp_ax = 0x0000;
    uint8_t  carryf;

    __asm__ __volatile__ (
            "int $0x13\n\t"
#ifdef __GCC_ASM_FLAG_OUTPUTS__
            : [cf]"=@ccc"(carryf),
#else
            "setc %[cf]\n\t"
            : [cf]"=qm"(carryf),
#endif
              "+a"(temp_ax)
            : "d"(disk_info->driveNum)
            : "cc");

    disk_info->status = temp_ax;

    return (carryf);

}

/* Forced inline version of read_sector */
static inline fastcall always_inline uint8_t
read_sector_chs_i (disk_info_s *const disk_info)
{
    uint16_t temp_ax;
    uint16_t temp_dx;
    uint8_t  carryf = 0;
    uint8_t  retry_count = 0;

#ifndef BUGGY_BIOS_SUPPORT
    temp_dx = (disk_info->head << 8) | disk_info->driveNum;
#endif

    do {
        /* Only reset disk if error detected previously */
        if (carryf)
            reset_disk_i (disk_info);

        /* Need to reload AX during each iteration since a previous
         * int 0x13 call will destroy its contents. There was a bug on
         * earlier BIOSes where DX may have been clobbered.
         */

        temp_ax = (0x02 << 8) | disk_info->numSectors;
#ifdef BUGGY_BIOS_SUPPORT
        temp_dx = (disk_info->head << 8) | disk_info->driveNum;
#endif

        __asm__ __volatile__ (
                "push %%es\n\t"
                "mov %w[seg], %%es\n\t"
#ifdef BUGGY_BIOS_SUPPORT
                "stc\n\t"        /* Some early bioses have CF bug */
                "int $0x13\n\t"
                "sti\n\t"        /* Some early bioses don't re-enable interrupts */
#else
                "int $0x13\n\t"
#endif
                "pop %%es\n\t"
#ifdef __GCC_ASM_FLAG_OUTPUTS__
                : [cf]"=@ccc"(carryf),
#else
                "setc %[cf]\n\t"
                : [cf]"=qm"(carryf),
#endif
#ifdef BUGGY_BIOS_SUPPORT
                  "+a"(temp_ax),
                  "+d"(temp_dx)
                  :
#else
                  "+a"(temp_ax)
                  :
                  "d"(temp_dx),
#endif
                  "c"(((disk_info->cylinder & 0xff) << 8) |
                     ((disk_info->cylinder >> 2) & 0xC0) |
                     (disk_info->sector & 0x3f)),
                  "b"(disk_info->offset),
                  [seg]"r"(disk_info->segment)
                : "memory", "cc");

    } while (carryf && (++retry_count < disk_info->retries));

    disk_info->status = temp_ax;
    return (carryf);
}

/* Forced inline version of read_sector_lba */
static inline fastcall always_inline uint8_t
read_sector_lba_i (disk_info_s *const disk_info, const uint32_t lba)
{
    disk_info->cylinder = lba / disk_info->sectorsPerTrack / disk_info->numHeads;
    disk_info->head     = (lba / disk_info->sectorsPerTrack) % disk_info->numHeads;
    disk_info->sector   = (lba % disk_info->sectorsPerTrack) + 1;

    return read_sector_chs_i (disk_info);
}
#endif

biosdisk.c

#include <stdint.h>
#include "biosdisk.h"

fastcall uint8_t
reset_disk (disk_info_s *const disk_info)
{
    return reset_disk_i (disk_info);
}

fastcall uint8_t
read_sector_chs (disk_info_s *const disk_info)
{
    return read_sector_chs_i (disk_info);
}

fastcall uint8_t
read_sector_lba (disk_info_s *const disk_info, const uint32_t lba)
{
    return read_sector_lba_i (disk_info, lba);
}

x86helper.h

#ifndef X86HELPER_H
#define X86HELPER_H

#define fastcall  __attribute__((regparm(3)))

/* noreturn lets GCC know that a function that it may detect
   won't exit is intentional */
#define noreturn      __attribute__((noreturn))
#define always_inline __attribute__((always_inline))
#define used          __attribute__((used))

#endif

可以找到一个小的概念证明项目,该项目可以在GCC中创建一个两阶段的引导加载程序,on my website


注释

  • Int 13h/AH=0h重置磁盘系统。在诸如软盘之类的实际硬件上,此操作可能会花费大量时间,因为它还会重新校准驱动器磁头。仅在检测到错误之后且重试磁盘操作之前,才应重置磁盘。

  • 使用GCC创建将在实模式下运行的代码充其量是有问题的。用-m16生成的代码通常只能在80386或更高版本的处理器上运行。

  • 编译器不能保证多个asm语句按照它们在代码中出现的顺序发出。您应该将多个asm语句合并为一个。 GCC documentation说:

      

    即使在使用volatile限定符时,也不要期望 asm 语句序列在编译后会保持完美连续。如果某些指令需要在输出中保持连续,请将它们放在一条多指令 asm 语句中。

  • 如果您在GCC的内联汇编中修改寄存器,您应该告诉编译器。使用GCC的扩展内联汇编,并在 clobber 列表中列出修改后的寄存器。

  • 尝试将内联汇编最小化,并尽可能多地使用 C 代码。 David Wohlferd用reasons not to use inline assembly写了一篇不错的文章。如果您不了解内联汇编的细微差别,则可以考虑在单独的汇编语言模块中编写代码,并将其链接到您的 C 程序。

  • GCC没有实模式的20-bit segment offset addressing概念,这会使事情变得过于复杂和complex肿。除了使用GCC之外,还有其他选择可以在 C 中开发16位代码,例如Open Watcom C/C++或Alexey Frunze的Smaller C编译器。

答案 1 :(得分:0)

如果操作失败,ah中的值将会更改。您的代码假定它不会被更改。