对data.frame
中的R
执行类似连接操作的最快方法是什么?假设我有下表:
df <- data.frame(content = c("c1", "c2", "c3", "c4", "c5"),
groups = c("g1", "g1", "g1", "g2", "g2"),
stringsAsFactors = F)
df$groups <- as.factor(df$groups)
我希望有效地按组content
列连接单元格的内容,以获得相当于:
df2 <- data.frame(content = c("c1 c2 c3", "c4 c5"),
groups = c("g1", "g2"),
stringsAsFactors = F)
df2 $groups <- as.factor(df2 $groups)
我更喜欢一些dplyr
操作,但不知道如何应用它。
答案 0 :(得分:3)
与tapply
的近似值为aggregate
,可让您执行此操作:
aggregate(content ~ groups, df, paste, collapse = " ")
# groups content
# 1 g1 c1 c2 c3
# 2 g2 c4 c5
保留因素:
str(.Last.value)
# 'data.frame': 2 obs. of 2 variables:
# $ groups : Factor w/ 2 levels "g1","g2": 1 2
# $ content: chr "c1 c2 c3" "c4 c5"
既然你提到你正在寻找dplyr
方法,你可以尝试这样的事情:
library(dplyr)
df %>% group_by(groups) %>% summarise(content = paste(content, collapse = " "))
# Source: local data frame [2 x 2]
#
# groups content
# 1 g1 c1 c2 c3
# 2 g2 c4 c5
答案 1 :(得分:2)
使用data.table
:
library(data.table)
dt = as.data.table(df)
dt[, paste(content, collapse = " "), by = groups]
# groups V1
#1: g1 c1 c2 c3
#2: g2 c4 c5
由于OP中提到了速度,data.table
和dplyr
非常接近(基本方法非常慢,测试它们没有意义):
dt = data.table(content = sample(letters, 26e6, T), groups = LETTERS)
df = as.data.frame(dt)
system.time(dt[, paste(content, collapse = " "), by = groups])
# user system elapsed
# 5.37 0.06 5.65
system.time(df %>% group_by(groups) %>% summarise(paste(content, collapse = " ")))
# user system elapsed
# 7.10 0.13 7.67
答案 2 :(得分:0)
以下是使用基础tapply
splat<-with(df, tapply(content, groups, paste, collapse=" "))
df2<-data.frame(groups=names(splat), content=splat, stringsAsFactors=F)
df2$groups <- as.factor(df2$groups)
给你
# groups content
# g1 g1 c1 c2 c3
# g2 g2 c4 c5
(额外&#34; g1 / g2&#34; s是data.frame的rownames)