如何在mongodb聚合管道中使用Javascript对象?

时间:2014-06-20 21:33:51

标签: javascript mongodb aggregation-framework

我有一个JS对象norm我想在mongo聚合管道中使用,如下所示:

var norm = { 
    1: 1, 
    2: 1.16,
    3: 1.413,
    4: 1.622,
    5: 1.6,
    6: 1.753,
    7: 3.001,
    8: 2.818,
    9: 3.291,
    10: 2.824,
    11: 2.993,
    12: 2.699,
    13: 1.099,
    14: 1.035,
    15: 1.172,
    16: 1.013,
    17: 0.9936,
    18: 1.069
};

db.mycoll.aggregate([
    {$match : 
        {"_id.day" : ISODate("2014-06-19T00:00:00.000Z"), 
         "_id.lt" : "l",
         "_id.rt" : "rltdlsts",
         "_id.m": false   }
    },

    {$unwind: '$value.rl'},

    {$match: {'value.rl.p': {$gte: 1, $lte: 18} } },

    {$group: {_id: '$value.rl.a', 
                v: {$sum: '$value.rl.v'},
                nv: { $sum: { $multiply: [ norm['$value.rl.p'], '$value.rl.v' ] } },
                c: {$sum: '$value.rl.c'}
            }},

    {$project: {
        _id: "$_id",
        'v': "$v",
        'c': "$c",
        'nv': "$nv"
      }
    },

    {$sort: {'_id': 1}}
])

我得到这样的结果,其中nv总是0:

{
    "result" : [ 
        {
            "_id" : 1,
            "v" : 89172,
            "nv" : 0,
            "c" : 604
        }, 
        {
            "_id" : 4,
            "v" : 67872,
            "nv" : 0,
            "c" : 296
        }, 
        {
            "_id" : 5,
            "v" : 33999,
            "nv" : 0,
            "c" : 13
        }, 
        {
            "_id" : 6,
            "v" : 4727,
            "nv" : 0,
            "c" : 6
        }, 
        {
            "_id" : 8,
            "v" : 913118,
            "nv" : 0,
            "c" : 14055
        }, 
        {
            "_id" : 9,
            "v" : 204099,
            "nv" : 0,
            "c" : 3021
        }, 
        {
            "_id" : 11,
            "v" : 151711,
            "nv" : 0,
            "c" : 1075
        }, 
        {
            "_id" : 12,
            "v" : 196369,
            "nv" : 0,
            "c" : 601
        }, 
        {
            "_id" : 13,
            "v" : 277705,
            "nv" : 0,
            "c" : 2302
        }, 
        {
            "_id" : 14,
            "v" : 64005,
            "nv" : 0,
            "c" : 970
        }, 
        {
            "_id" : 15,
            "v" : 54558,
            "nv" : 0,
            "c" : 326
        }, 
        {
            "_id" : 16,
            "v" : 74576,
            "nv" : 0,
            "c" : 305
        }, 
        {
            "_id" : 17,
            "v" : 1144,
            "nv" : 0,
            "c" : 1
        }, 
        {
            "_id" : 18,
            "v" : 1023,
            "nv" : 0,
            "c" : 0
        }, 
        {
            "_id" : 19,
            "v" : 54511,
            "nv" : 0,
            "c" : 98
        }, 
        {
            "_id" : 20,
            "v" : 674,
            "nv" : 0,
            "c" : 0
        }, 
        {
            "_id" : 21,
            "v" : 3359,
            "nv" : 0,
            "c" : 4
        }, 
        {
            "_id" : 22,
            "v" : 496402,
            "nv" : 0,
            "c" : 3786
        }, 
        {
            "_id" : 23,
            "v" : 293212,
            "nv" : 0,
            "c" : 1904
        }, 
        {
            "_id" : 24,
            "v" : 764087,
            "nv" : 0,
            "c" : 8847
        }, 
        {
            "_id" : 25,
            "v" : 291358,
            "nv" : 0,
            "c" : 7012
        }, 
        {
            "_id" : 28,
            "v" : 2933,
            "nv" : 0,
            "c" : 27
        }
    ],
    "ok" : 1
}

如何解决这个问题?

1 个答案:

答案 0 :(得分:7)

有一些方法可以在聚合框架下解决这个问题,而无需借助mapReduce。最近的MongoDB 2.6及更高版本有一些运算符可以帮助使用$let$map来定义变量和处理数组。

您的外部声明对于以下目的看起来更好:

var norm = [
    { "key": 1, "value": 1 }, 
    { "key": 2, "value": 1.16 },
    { "key": 3, "value": 1.413 },
    { "key": 4, "value": 1.622 },
    { "key": 5, "value":  1.6 },
    { "key": 6, "value": 1.753 },
    { "key": 7, "value":  3.001 },
    { "key": 8, "value":  2.818 },
    { "key": 9, "value": 3.291 },
    { "key": 10,"value": 2.824 },
    { "key": 11, "value": 2.993 },
    { "key": 12, "value": 2.699 },
    { "key": 13, "value": 1.099 },
    { "key": 14, "value": 1.035 },
    { "key": 15, "value": 1.172 },
    { "key": 16, "value": 1.013 },
    { "key": 17, "value": 0.9936 },
    { "key": 18, "value": 1.069 }
];

然后处理聚合语句:

db.mycoll.aggregate([
    { "$match": {
        "_id.day" : ISODate("2014-06-19T00:00:00.000Z"), 
        "_id.lt" : "l",
        "_id.rt" : "rltdlsts",
        "_id.m": false
    }},
    { "$unwind": "$value.rl" },

    { "$match": { "value.rl.p": { "$gte": 1, "$lte": 18 } } },

    { "$project": {
        "value": 1,
        "norm": {
            "$let": {
               "vars": {
                   "norm": norm
               },
               "in": {
                   "$setDifference": [
                       { "$map": {
                           "input": "$$norm",
                           "as": "norm",
                           "in": {
                               "$cond": [
                                   { "$eq": [ "$$norm.key", "$value.rl.p" ] },
                                   "$$norm.value",
                                   false
                               ]
                           }
                       }},
                       [false]
                   ]
               }
            }               
        }
    }},
    { "$unwind": "$norm" }

    { "$group": {
        "_id": "$value.rl.a", 
        "v": { "$sum": "$value.rl.v" },
        "c": { "$sum": "$value.rl.c" },
        "nv": { "$sum": { "$multiply": [ "$norm", "$value.rl.v" ] } }
    }}
])

$project阶段,您实际上将外部声明作为数组变量注入管道,然后处理每个元素以匹配您现有的“value.rl.p”键。这只返回单个匹配值,因此$unwind的进一步使用实际上只是使单个元素数组结果为单个值,以便在后面的$group语句中使用。

早期版本中不支持运算符的传统方法是使用嵌套的$cond语句来评估每个值:

db.mycoll.aggregate([
    { "$match": {
        "_id.day" : ISODate("2014-06-19T00:00:00.000Z"), 
        "_id.lt" : "l",
        "_id.rt" : "rltdlsts",
        "_id.m": false
    }},

    { "$unwind": "$value.rl" },

    { "$match": { "value.rl.p": { "$gte": 1, "$lte": 18 } } },

    { "$group": {
        "_id": "$value.rl.a", 
        "v": { "$sum": "$value.rl.v" },
        "c": { "$sum": "$value.rl.c" },
        "nv": { "$sum": { "$multiply": [ 
            { "$cond": [
                { "$eq": [ "$value.rl.p", 2 },
                1.16
                { "$cond": [
                    { "$eq": [ "$value.rl.p", 3 },
                    1.413,
                    { "$cond": [
                        { "$eq": [ "$value.rl.p", 4 },
                        1.622,
                        { "$cond": [
                            { "$eq": [ "$value.rl.p", 5 },
                            1.6,
                            { "$cond": [
                                { "$eq": [ "$value.rl.p", 6 },
                                1.753,
                                { "$cond": [
                                    { "$eq": [ "$value.rl.p", 7 },
                                    3.001,
                                    { "$cond": [
                                        { "$eq": [ "$value.rl.p", 8 },
                                        2.818,
                                        { "$cond": [
                                            { "$eq": [ "$value.rl.p", 9 },
                                            3.291,
                                            { "$cond": [
                                                { "$eq": [ "$value.rl.p", 10 },
                                                2.824,
                                                { "$cond": [
                                                    { "$eq": [ "$value.rl.p", 11 },
                                                    2.993,
                                                    { "$cond": [
                                                        { "$eq": [ "$value.rl.p", 12 },
                                                        2.699,
                                                        { "$cond": [
                                                            { "$eq": [ "$value.rl.p", 13 },
                                                            1.099,
                                                            { "$cond": [
                                                                { "$eq": [ "$value.rl.p", 14 },
                                                                1.035,
                                                                { "$cond": [
                                                                    { "$eq": [ "$value.rl.p", 15 },
                                                                    1.172,
                                                                    { "$cond": [
                                                                        { "$eq": [ "$value.rl.p", 16 },
                                                                        1.013,
                                                                        { "$cond": [
                                                                            { "$eq": [ "$value.rl.p", 17 },
                                                                            0.9936,
                                                                            { "$cond": [
                                                                                { "$eq": [ "$value.rl.p", 18 },
                                                                                1.069,
                                                                                1
                                                                            ]}
                                                                        ]}
                                                                    ]}
                                                                ]}
                                                            ]}
                                                        ]}
                                                    ]}
                                                ]}
                                            ]}
                                        ]}
                                    ]}
                                ]}
                            ]}
                        ]}
                    ]}
                ]}
            ]},
            "$value.rl.v" 
        ]}}
    }}
])

它看起来很吵,但它是上面显示的查询的下一个最有效的形式。实际上,您将生成管道阶段与shown here类似。