如何定义类型类同义词

时间:2014-06-20 15:10:26

标签: haskell ghc typeclass

为了成为Haskell的数字类型系统的替代品(sa),numeric-prelude的开发人员滑倒并决定命名所有类型类C。除了使文档完全混淆之外,这意味着我必须完全限定类型类的所有用法:

import qualified Algebra.Additive (C)
import qualified Algebra.Ring (C)
...

newtype Foo a = Foo a

instance (Algebra.Additive.C a) => Algebra.Additive.C (Foo a) where ...

myadd :: (Algebra.Additive.C a) => a -> a -> a
myadd a b = ...

此外,由于NumericPrelude具有更细粒度的类型类,因此我通常必须导入几个不同的NumericPrelude模块。我可以通过定义顶级约束同义词来简化这一点

{-# LANGUAGE ConstraintKinds #-}

module NPSynonyms (Additive) where

import qualified Algebra.Additive (C)

type Additive a = (Algebra.Additive.C a)

允许我做出理智的功能:

myadd :: (Additive a) => a -> a -> a
myadd a b = ...

但是,当我需要定义一个实例时,我仍然必须(也)导入原始的NumericPrelude类:

{-# LANGUAGE ConstraintKinds #-}

import NPSynonyms
import Algebra.Additive (C)

newtype Foo a = Foo a

instance (Additive a) => Algebra.Additive.C (Foo a) where ...

因此,我没有将Additive类型同义词与Constraint类型相提并论,而是真正类似于定义<类型Algebra.Additive.C的em> typeclass 同义词。在GHC 7.8中有没有办法做到这一点,还是有任何理智的选择?

1 个答案:

答案 0 :(得分:5)

  

你必须完全符合资格

不,不完全符合资格。考虑:

import qualified Algebra.Additive as Add

myadd :: Add.C a => a -> a -> a

这看起来对我来说相当可读。

编辑:

还要考虑创建一个超类并将其视为别名:

class (Add.C a, Ring.C a) => Num a where
instance Num Int
instance Num Word