我正在使用matlab创建一个用于识别不同种类叶子的应用程序。一旦我开始训练网络,它将训练1000次迭代。(默认值)这项任务需要2个多小时。这是我的代码。
clear ; close all; clc
fruit_list = ['M','G','B','P'];
x = [];
y = [];
training_dir ='Training Images\';
for i = 1:size(fruit_list,2)
directory = strcat(training_dir,fruit_list(i),'\');
file_list = dir(strcat(directory,'*JPG'));
for j = 1:size(file_list)
im = imread(strcat(directory,file_list(j).name));
resized = preprocess(im);
Savefilename = strcat('Preprocessed Training Images\',int2str(i),'+',int2str(j),'.jpg');
imwrite(resized,Savefilename);
col = resized(:);
x = [x,col];
o = [0;0;0;0];
o(i) = 1;
y = [y,o];
end
end
nnf = newff(min_max(x),[5 4], {'tansig' 'purelin'});
res = train(nnf,x,y);
pred = sim(res,x);
[val pInd] = max(pred);
for i = pInd
if i==1
fprintf('Mango\n');
elseif i == 2
fprintf('Guava\n');
elseif i == 3
fprintf('Bo\n');
elseif i == 4
fprintf('Papaya\n');
end
end
[aval aInd] = max(y);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pInd == aInd)) * 100);
test_directory = 'Test Images\'
[tes_act,test_pred] = test(test_directory,fruit_list,res);
fprintf('\nTest Set Accuracy: %f\n', mean(double(test_pred == test_act)) * 100);
我想减少培训过程中的迭代次数。我该怎么做?请帮帮我。
答案 0 :(得分:1)
现在我知道了答案。我找到了办法。
networkname.trainParam.epochs = #Number of iterations;