magmablas_dgemm不适用于更大的网格尺寸

时间:2014-06-12 00:17:34

标签: c cuda blas magma

我是使用cuda和岩浆库的新手。我正在尝试一些关于测试问题的函数,一个2D热方程。我写的代码似乎完全适用于32,64和128的网格大小。但是对于256或更大的网格大小,它产生了错误的结果。我只在这里发布部分代码,足以重现错误。转移最终矩阵并在matlab中查看它表明第二次调用magmablas_dgemm会在解决方案中引入错误。

有没有人可以看到为什么这个代码会因较大的网格尺寸而中断?

int main(int argc, char* argv[]) 
{
    // Get parameters for problem set up
    int side_width = atoi(argv[1]); //assuming square grid, N/32 integer 
    double dx = 2.0 / (side_width-1);
    double dt = 0.25 * dx;
    //double Tend = dt*3;// 0.5; 


    // create memory pointers for derivative operator matrices and solution matrix
    double* U;
    double* Dleft;
    double* Dright;
    double* dev_U;
    double* dev_Dleft;
    double* dev_Dright;

    //initialize the MAGMA system
    magma_init();

    magma_int_t N = side_width;

    // temp variables required by MAGMA functions
    magma_int_t *piv, info, err;
    piv = (magma_int_t*)malloc(N*sizeof(magma_int_t));


    // Allocate memory for matrices on host and device
    err  = magma_dmalloc_cpu(&U, N*N);
    err += magma_dmalloc_cpu(&Dleft, N*N);
    err += magma_dmalloc_cpu(&Dright, N*N);
    err += magma_dmalloc(&dev_U, N*N);
    err += magma_dmalloc(&dev_Dleft, N*N);
    err += magma_dmalloc(&dev_Dright, N*N);  

    if (err){
        printf("error in allocation. err number = %d\n", err);
        exit(1);
    }


    // zero out matrices (not efficient but correct)
    for (int k=0; k<N*N; ++k ){
        U[k] = 1.0;
        Dleft[k] = 0.0;
        Dright[k] = 0.0;
    }


    //create derivative operator matrices
    double a = dt/2.0/dx/dx;
    double b = dt/dx/dx;
    Dleft[0] = 1.0;
    Dleft[N*N-1] = 1.0;
    for (int k=1; k<N-1; ++k) {
        Dleft[k*N + k-1] = -a;
        Dleft[k*N + k]   = 1+b;
        Dleft[k*N + k+1] = -a;

        Dright[k*N + k-1] = a;
        Dright[k*N + k]   = 1-b;
        Dright[k*N + k+1] = a;
    }

    // Determine block and thread amounts
    int grid_dim = ((side_width + 31)/32) ;
    int block_dim = 32;
    dim3 gridDim(grid_dim, grid_dim);
    dim3 blockDim(block_dim, block_dim);

    //copy data from host to device
    magma_dsetmatrix(N, N, U, N, dev_U, N); 
    magma_dsetmatrix(N, N, Dleft, N, dev_Dleft, N);
    magma_dsetmatrix(N, N, Dright, N, dev_Dright, N);

    // LU factorize the left hand operator matrix
    magma_dgetrf_gpu(N, N, dev_Dleft, N, piv, &info);


    double tn = 0; //time counter

    // needed to take first step outside while loop because of some tricky transpose nonsense happening
    tn += dt; 
    // compute explicit step :  Uhat=Dright*U^T
    magmablas_dgemm(MagmaTrans,MagmaNoTrans, N, N, N, 1.0f, dev_Dright, N, dev_U, N, 0.0f, dev_U, N);
    // implicit step solve :  Dleft*U=Uhat
    magma_dgetrs_gpu(MagmaTrans, N, N, dev_Dleft, N, piv, dev_U, N, &info);
    // compute explicit step :  Uhat=Dright*U^T
    magmablas_dgemm(MagmaTrans, MagmaTrans, N, N, N, 1.0f, dev_Dright, N, dev_U, N, 0.0f, dev_U, N);


    printf("GPU matrix U at time %3.3f \n ", tn);
    magma_dprint_gpu(16, 16, dev_U, N);  


    //copy solution from device to host
    magma_dgetmatrix(N, N, dev_U, N, U, N);


    //write data to file
    char filename[256];
    char str_t[128];
    sprintf(str_t, "%d", N );
    sprintf(filename, "ADI_%s.bin", str_t);
    FILE* fileID = fopen(filename, "wb");
    for (int i=0; i<N*N; ++i){
        fwrite(&U[i],sizeof(double),1,fileID);
    }       
    fclose(fileID);

    free(U);
    free(Dleft);
    free(Dright);
    magma_free(dev_U);
    magma_free(dev_Dleft);
    magma_free(dev_Dright);
    free(piv);


    magma_finalize();

    return 0;

}

1 个答案:

答案 0 :(得分:0)

据我所知,BLAS / LAPACK gemm从未支持就地操作,即

C := alpha*op( A )*op( B ) + beta*C

无法转化为

A := alpha*op( A )*op( B ) + beta*A

B := alpha*op( A )*op( B ) + beta*B

保证正确性,即使对于alpha = 1, beta = 0的规范案例也是如此。如果您可以关注fortran,我建议您查看Dongarra小组的reference code。如果矩阵指针作为C传递A或B,则该实现将中断。

在多线程或大规模并行BLAS实现中,尤其如此。大多数并行执行环境不支持任何类型的强或固定执行顺序。这可能意味着由于缺乏执行顺序保证,无意中在线性代数例程的串行版本中工作的操作会并行中断。如果并行BLAS或LAPACK实现中的例程没有明确表示它支持就地操作,那么不要另外假设,因为根本就有龙......

您的MAGMA gemm调用只是意外地以小尺寸工作,并且可能是因为非常小的矩阵尺寸没有暴露足够的并行性以达到由输入和输出指针的混叠引起的正确性问题。如果您更改代码以使输入和输出是不同的内存分配,我怀疑问题将消失。