我有一个RDD:byUserHour: org.apache.spark.rdd.RDD[(String, String, Int)]
我想为中位数,平均值等计算创建一个稀疏的数据矩阵.RDD包含row_id,column_id和value。我有两个包含row_id和column_id字符串的数组用于查找。
这是我的尝试:
import breeze.linalg._
val builder = new CSCMatrix.Builder[Int](rows=BCnUsers.value.toInt,cols=broadcastTimes.value.size)
byUserHour.foreach{x =>
val row = userids.indexOf(x._1)
val col = broadcastTimes.value.indexOf(x._2)
builder.add(row,col,x._3)}
builder.result()
这是我的错误:
14/06/10 16:39:34 INFO DAGScheduler: Failed to run foreach at <console>:38
org.apache.spark.SparkException: Job aborted due to stage failure: Task not serializable: java.io.NotSerializableException: breeze.linalg.CSCMatrix$Builder$mcI$sp
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1033)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:770)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:713)
at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1176)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
我的数据集非常大,所以如果可能的话我想分发。任何帮助将不胜感激。
进度更新:
CSCMartix并不适用于Spark。但是,RowMatrix扩展了DistributedMatrix
。 RowMatrix
确实有一个方法computeColumnSummaryStatistics()
,它应该计算我正在寻找的一些统计数据。我知道MLlib每天都在增长,所以我会关注更新,但在此期间我会尝试RDD[Vector]
来提供RowMatrix
。注意到RowMatrix
是实验性的并且表示没有有意义的行索引的面向行的分布式矩阵。
答案 0 :(得分:2)
从映射略有不同byUserHour现在是RDD[(String, (String, Int))]
.
因为RowMatrix不保留row_id上的groupByKey行的顺序。也许将来我会弄清楚如何使用稀疏矩阵来做到这一点。
val byUser = byUserHour.groupByKey // RDD[(String, Iterable[(String, Int)])]
val times = countHour.map(x => x._1.split("\\+")(1)).distinct.collect.sortWith(_ < _) // Array[String]
val broadcastTimes = sc.broadcast(times) // Broadcast[Array[String]]
val userMaps = byUser.mapValues {
x => x.map{
case(time,cnt) => time -> cnt
}.toMap
} // RDD[(String, scala.collection.immutable.Map[String,Int])]
val rows = userMaps.map {
case(u,ut) => (u.toDouble +: broadcastTimes.value.map(ut.getOrElse(_,0).toDouble))} // RDD[Array[Double]]
import org.apache.spark.mllib.linalg.{Vector, Vectors}
val rowVec = rows.map(x => Vectors.dense(x)) // RDD[org.apache.spark.mllib.linalg.Vector]
import org.apache.spark.mllib.linalg.distributed._
val countMatrix = new RowMatrix(rowVec)
val stats = countMatrix.computeColumnSummaryStatistics()
val meanvec = stats.mean
答案 1 :(得分:1)
您可以使用CoordinateMatrix
:
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
val sparseMatrix = new CoordinateMatrix(byUserHour.map {
case (row, col, data) => MatrixEntry(row, col, data)
})