我正在尝试将Prims Alghoritm实施到我的图形程序中,但我遇到了一些困难,我遵循了一个我发现的指南 http://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-minimum-spanning-tree-mst-2/
似乎在某种程度上工作正常,但指南输出是:
Edge Weight
0 - 1 2
1 - 2 3
0 - 3 6
1 - 4 5
我的解决方案正在回归:
Edge Weight
1 - 0 2
1 - 2 3
1 - 3 8 <---- this one seems off.
1 - 4 5
我真的不知道我的代码有什么问题。
我的代码是:
void b_Prim(){
reset_adjmat(G); // resets current adjmat and creates a new one.
int V = b_card(G); // b_card = cardinality
int count, i, v, u, min_index, min = -1,pIndex = 1;
int key[V]; // Key values used to pick minimum eWeight edge in cut
int mstSet[V]; // To represent set of vertices not yet included in MST
// Initialize all keys as INFINITE
for (i = 0; i < V; i++){
key[i] = -1;
mstSet[i] = 0;
}
// Always include first 1st vertex in MST.
key[0] = 0; // Make key 0 so that this vertex is picked as first vertex
source[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (count = 0; count < V-1; count++)
{
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
for (v = 0; v < V; v++)
if (mstSet[v] == 0 && ((min == -1 && key[v] != -1) || key[v] < min)){
min = key[v];
min_index = v;
}
u = min_index;
// Add the picked vertex to the MST Set
mstSet[u] = 1;
// Update key value and source index of the adjacent vertices of
// the picked vertex. Consider only those vertices which are not yet
// included in MST
for (v= 0; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (adjmat[u][v] != 0 && mstSet[v] == 0 && (key[v] == -1 || adjmat[u][v] < key[v])){
source[pIndex] = u;
dest[pIndex] = v;
key[v] = adjmat[u][v];
eWeight[pIndex] = key[v];
pIndex++;
}else if(adjmat[u][v] != 0 && mstSet[v] == 0 && key[v] == 0){
source[pIndex] = u;
dest[pIndex] = v;
eWeight[pIndex] = adjmat[u][v];
pIndex++;
}
}
}
答案 0 :(得分:1)
此评论:
// Initialize all keys as INFINITE
与代码的作用不对应:
key[i] = -1;
因为你进一步使用这个比较:
key[v] < min
如果key[v]
为-1
key[v]
,那么将产生与pIndex
无穷大时的预期不同的结果
。换句话说,这导致上述比较的确比实际情况要多得多。
可能会有更多问题 - 我没有详细检查,但使用{{1}}看起来很可疑,例如。