使用scikit-learn消除随机森林的递归特征

时间:2014-06-09 15:26:36

标签: python pandas scikit-learn random-forest feature-selection

我试图使用scikit-learn和随机森林分类器来预先形成递归特征,使用OOB ROC作为对递归过程中创建的每个子集进行评分的方法。

但是,当我尝试使用RFECV方法时,出现错误AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'

随机森林本身没有系数,但他们确实按基尼评分排名。所以,我想知道如何解决这个问题。

请注意,我想使用一种方法,明确告诉我在最佳分组中选择了pandas DataFrame中的哪些功能,因为我使用递归功能选择来尝试最小化数据量输入最终的分类器。

以下是一些示例代码:

from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV

iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=pd.Series(iris.target, name='target')
rf = RandomForestClassifier(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=10, scoring='ROC', verbose=2)
selector=rfecv.fit(x, y)

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 336, in fit
    ranking_ = rfe.fit(X_train, y_train).ranking_
  File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 148, in fit
    if estimator.coef_.ndim > 1:
AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'

4 个答案:

答案 0 :(得分:21)

以下是我为使RandomForestClassifier与RFECV合作而采取的措施:

class RandomForestClassifierWithCoef(RandomForestClassifier):
    def fit(self, *args, **kwargs):
        super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs)
        self.coef_ = self.feature_importances_

如果您使用&#39;准​​确度&#39;只需使用此课程即可。或者&#39; f1&#39;得分了。对于&#39; roc_auc&#39;,RFECV抱怨不支持多类格式。使用下面的代码将其更改为两级分类,&#39; roc_auc&#39;得分工作。 (使用Python 3.4.1和scikit-learn 0.15.1)

y=(pd.Series(iris.target, name='target')==2).astype(int)

插入代码:

from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV

class RandomForestClassifierWithCoef(RandomForestClassifier):
    def fit(self, *args, **kwargs):
        super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs)
        self.coef_ = self.feature_importances_

iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=(pd.Series(iris.target, name='target')==2).astype(int)
rf = RandomForestClassifierWithCoef(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=2, scoring='roc_auc', verbose=2)
selector=rfecv.fit(x, y)

答案 1 :(得分:6)

这是我的代码,我已经整理了一下以使其与您的任务相关:

features_to_use = fea_cols #  this is a list of features
# empty dataframe
trim_5_df = DataFrame(columns=features_to_use)
run=1
# this will remove the 5 worst features determined by their feature importance computed by the RF classifier
while len(features_to_use)>6:
    print('number of features:%d' % (len(features_to_use)))
    # build the classifier
    clf = RandomForestClassifier(n_estimators=1000, random_state=0, n_jobs=-1)
    # train the classifier
    clf.fit(train[features_to_use], train['OpenStatusMod'].values)
    print('classifier score: %f\n' % clf.score(train[features_to_use], df['OpenStatusMod'].values))
    # predict the class and print the classification report, f1 micro, f1 macro score
    pred = clf.predict(test[features_to_use])
    print(classification_report(test['OpenStatusMod'].values, pred, target_names=status_labels))
    print('micro score: ')
    print(metrics.precision_recall_fscore_support(test['OpenStatusMod'].values, pred, average='micro'))
    print('macro score:\n')
    print(metrics.precision_recall_fscore_support(test['OpenStatusMod'].values, pred, average='macro'))
    # predict the class probabilities
    probs = clf.predict_proba(test[features_to_use])
    # rescale the priors
    new_probs = kf.cap_and_update_priors(priors, probs, private_priors, 0.001)
    # calculate logloss with the rescaled probabilities
    print('log loss: %f\n' % log_loss(test['OpenStatusMod'].values, new_probs))
    row={}
    if hasattr(clf, "feature_importances_"):
        # sort the features by importance
        sorted_idx = np.argsort(clf.feature_importances_)
        # reverse the order so it is descending
        sorted_idx = sorted_idx[::-1]
        # add to dataframe
        row['num_features'] = len(features_to_use)
        row['features_used'] = ','.join(features_to_use)
        # trim the worst 5
        sorted_idx = sorted_idx[: -5]
        # swap the features list with the trimmed features
        temp = features_to_use
        features_to_use=[]
        for feat in sorted_idx:
            features_to_use.append(temp[feat])
        # add the logloss performance
        row['logloss']=[log_loss(test['OpenStatusMod'].values, new_probs)]
    print('')
    # add the row to the dataframe
    trim_5_df = trim_5_df.append(DataFrame(row))
run +=1

所以我在这里做的是我有一个我要训练然后预测的功能列表,使用功能重要性我然后修剪最差的5并重复。在每次运行期间,我都会添加一行来记录预测性能,以便稍后进行分析。

原始代码要大得多我有不同的分类器和数据集我正在分析,但我希望你从上面得到的图片。我注意到的是,对于随机森林,我在每次运行时删除的功能数量会影响性能,因此一次修剪1,3和5个功能会产生一组不同的最佳功能。

我发现使用GradientBoostingClassifer更具可预测性和可重复性,因为最终的一组最佳功能同意我是一次修剪1个特征还是3或5。

我希望我不是教你在这里吮吸鸡蛋,你可能比我更了解,但我对消融法的处理方法是使用快速分类器来大致了解最佳功能集,然后使用性能更好的分类器,然后开始超参数调整,再次做粗粒子comaprisons然后细细纹理一旦我感觉到最好的params是什么。

答案 2 :(得分:6)

我提交了添加coef_的请求,因此RandomForestClassifier可能与RFECV一起使用。但是,已经做出了改变。此更改将在版本0.17中。

https://github.com/scikit-learn/scikit-learn/issues/4945

如果您想立即使用它,可以提取最新的开发版本。

答案 3 :(得分:3)

这是我开胃的东西。这是一个非常简单的解决方案,并依赖于自定义精度指标(称为weightedAccuracy),因为我对高度不平衡的数据集进行了分类。但是,如果需要,它应该更容易扩展。

from sklearn import datasets
import pandas
from sklearn.ensemble import RandomForestClassifier
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix


def get_enhanced_confusion_matrix(actuals, predictions, labels):
    """"enhances confusion_matrix by adding sensivity and specificity metrics"""
    cm = confusion_matrix(actuals, predictions, labels = labels)
    sensitivity = float(cm[1][1]) / float(cm[1][0]+cm[1][1])
    specificity = float(cm[0][0]) / float(cm[0][0]+cm[0][1])
    weightedAccuracy = (sensitivity * 0.9) + (specificity * 0.1)
    return cm, sensitivity, specificity, weightedAccuracy

iris = datasets.load_iris()
x=pandas.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=pandas.Series(iris.target, name='target')

response, _  = pandas.factorize(y)

xTrain, xTest, yTrain, yTest = cross_validation.train_test_split(x, response, test_size = .25, random_state = 36583)
print "building the first forest"
rf = RandomForestClassifier(n_estimators = 500, min_samples_split = 2, n_jobs = -1, verbose = 1)
rf.fit(xTrain, yTrain)
importances = pandas.DataFrame({'name':x.columns,'imp':rf.feature_importances_
                                }).sort(['imp'], ascending = False).reset_index(drop = True)

cm, sensitivity, specificity, weightedAccuracy = get_enhanced_confusion_matrix(yTest, rf.predict(xTest), [0,1])
numFeatures = len(x.columns)

rfeMatrix = pandas.DataFrame({'numFeatures':[numFeatures], 
                              'weightedAccuracy':[weightedAccuracy], 
                              'sensitivity':[sensitivity], 
                              'specificity':[specificity]})

print "running RFE on  %d features"%numFeatures

for i in range(1,numFeatures,1):
    varsUsed = importances['name'][0:i]
    print "now using %d of %s features"%(len(varsUsed), numFeatures)
    xTrain, xTest, yTrain, yTest = cross_validation.train_test_split(x[varsUsed], response, test_size = .25)
    rf = RandomForestClassifier(n_estimators = 500, min_samples_split = 2,
                                n_jobs = -1, verbose = 1)
    rf.fit(xTrain, yTrain)
    cm, sensitivity, specificity, weightedAccuracy = get_enhanced_confusion_matrix(yTest, rf.predict(xTest), [0,1])
    print("\n"+str(cm))
    print('the sensitivity is %d percent'%(sensitivity * 100))
    print('the specificity is %d percent'%(specificity * 100))
    print('the weighted accuracy is %d percent'%(weightedAccuracy * 100))
    rfeMatrix = rfeMatrix.append(
                                pandas.DataFrame({'numFeatures':[len(varsUsed)], 
                                'weightedAccuracy':[weightedAccuracy], 
                                'sensitivity':[sensitivity], 
                                'specificity':[specificity]}), ignore_index = True)    
print("\n"+str(rfeMatrix))    
maxAccuracy = rfeMatrix.weightedAccuracy.max()
maxAccuracyFeatures = min(rfeMatrix.numFeatures[rfeMatrix.weightedAccuracy == maxAccuracy])
featuresUsed = importances['name'][0:maxAccuracyFeatures].tolist()

print "the final features used are %s"%featuresUsed