我已经对数据集进行了递归特征消除,现在尝试根据我的RFE返回的特征进行预测,但仍然遇到此错误:
ValueError: X has 31 features per sample; expecting 9
这是我为获得最佳功能并根据返回的功能转换数据而编写的代码
no_list = np.arange(1,len(list(dat)))
acc_score = 0
n_features = 0
score_list = []
for x in range(len(no_list)):
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state=100)
log_reg = LogisticRegression()
rfe = RFE(log_reg,no_list[x])
X_train_rfe = rfe.fit_transform(X_train,y_train)
X_test_rfe = rfe.transform(X_test)
log_reg.fit(X_train_rfe,y_train)
score = log_reg.score(X_test_rfe,y_test)
score_list.append(score)
if(score > acc_score):
acc_score = score
n_features = no_list[x]
rfe = RFE(log_reg,n_features)
rfe.fit_transform(X_train,y_train)
predictions = rfe.predict(X_test)
答案 0 :(得分:0)
先将X_test
转换成预测值。您的rfe
使用仅采用log_reg
的{{1}}模型。
n_features