我想知道是否有一种java方式,给定一个多边形,在给定距离和相同的中心绘制另一个。
我尝试了AffineTransform,但并不知道它是如何工作的。
谢谢。
答案 0 :(得分:0)
您需要将多边形的质心宽度和高度转换一半。我已经包含了来自http://paulbourke.net/geometry/polygonmesh/PolygonUtilities.java的代码来计算多边形的质心。
public void drawPolygon(){
Graphics2D g2 = bufferedImage.createGraphics();
Polygon poly=new Polygon();
poly.addPoint(100, 100);
poly.addPoint(200, 100);
poly.addPoint(200, 200);
poly.addPoint(150, 250);
poly.addPoint(100, 200);
poly.addPoint(100, 100);
g2.setColor(Color.blue);
g2.fillPolygon(poly);
g2.setColor(Color.red);
Point2D.Double []pts=new Point2D.Double[poly.npoints];
for (int i=0;i<poly.npoints;i++){
pts[i]=new Point2D.Double(poly.xpoints[i],poly.ypoints[i]);
}
Point2D centroid=centerOfMass(pts);
g2.translate(-centroid.getX(), -centroid.getY());
g2.scale(2, 2);
g2.drawPolygon(poly);
}
public static double area(Point2D[] polyPoints) {
int i, j, n = polyPoints.length;
double area = 0;
for (i = 0; i < n; i++) {
j = (i + 1) % n;
area += polyPoints[i].getX() * polyPoints[j].getY();
area -= polyPoints[j].getX() * polyPoints[i].getY();
}
area /= 2.0;
return (area);
}
/**
* Function to calculate the center of mass for a given polygon, according
* to the algorithm defined at
* http://local.wasp.uwa.edu.au/~pbourke/geometry/polyarea/
*
* @param polyPoints
* array of points in the polygon
* @return point that is the center of mass
*/
public static Point2D centerOfMass(Point2D[] polyPoints) {
double cx = 0, cy = 0;
double area = area(polyPoints);
// could change this to Point2D.Float if you want to use less memory
Point2D res = new Point2D.Double();
int i, j, n = polyPoints.length;
double factor = 0;
for (i = 0; i < n; i++) {
j = (i + 1) % n;
factor = (polyPoints[i].getX() * polyPoints[j].getY()
- polyPoints[j].getX() * polyPoints[i].getY());
cx += (polyPoints[i].getX() + polyPoints[j].getX()) * factor;
cy += (polyPoints[i].getY() + polyPoints[j].getY()) * factor;
}
area *= 6.0f;
factor = 1 / area;
cx *= factor;
cy *= factor;
res.setLocation(cx, cy);
return res;
}
另一种在GIS世界中常见的方法是缓冲多边形。有一个名为Java Topology Suite的库将提供此功能,但可能更难确定比例因子是什么。
这篇文章中有关于多边形增长的一些非常有趣的讨论:An algorithm for inflating/deflating (offsetting, buffering) polygons