作为输入,我有一张简单符号的照片,例如:https://www.dropbox.com/s/nrmsvfd0le0bkke/symbol.jpg
我想检测它中的直线,比如线的起点和终点。在这种情况下,假设符号的左上角是(0,0),则这些线的定义如下:
开始结束(线的起点和终点的坐标)
1.(0,0); (0,10)(垂直线)
2.(0,10); (15,15)
3.(15,15); (0,20)
4.(0,20); (0,30)
我该怎么做(最好使用OpenCV)?我虽然关于霍夫线,但它们似乎对完美的细直线有好处,而在图纸中并非如此。我也可能会处理二值化图像。
答案 0 :(得分:1)
尝试一下,
答案 1 :(得分:1)
也许你可以解决这个问题。
我使用了这段代码:
int main()
{
cv::Mat image = cv::imread("HoughLinesP_perfect.png");
cv::Mat gray;
cv::cvtColor(image,gray,CV_BGR2GRAY);
cv::Mat output; image.copyTo(output);
cv::Mat g_thres = gray == 0;
std::vector<cv::Vec4i> lines;
//cv::HoughLinesP( binary, lines, 1, 2*CV_PI/180, 100, 100, 50 );
// cv::HoughLinesP( h_thres, lines, 1, CV_PI/180, 100, image.cols/2, 10 );
cv::HoughLinesP( g_thres, lines, 1, CV_PI/(4*180.0), 50, image.cols/20, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
cv::line( output, cv::Point(lines[i][0], lines[i][3]),
cv::Point(lines[i][4], lines[i][3]), cv::Scalar(155,255,155), 1, 8 );
}
cv::imshow("g thres", g_thres);
cv::imwrite("HoughLinesP_out.png", output);
cv::resize(output, output, cv::Size(), 0.5,0.5);
cv::namedWindow("output"); cv::imshow("output", output);
cv::waitKey(-1);
std::cout << "finished" << std::endl;
return 0;
}
编辑:
使用简单的线聚类更新代码(`from minimum_distance函数取自SO):
给出这个结果:
float minimum_distance(cv::Point2f v, cv::Point2f w, cv::Point2f p) {
// Return minimum distance between line segment vw and point p
const float l2 = cv::norm(w-v) * cv::norm(w-v); // i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0) return cv::norm(p-v); // v == w case
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
//const float t = dot(p - v, w - v) / l2;
float t = ((p-v).x * (w-v).x + (p-v).y * (w-v).y)/l2;
if (t < 0.0) return cv::norm(p-v); // Beyond the 'v' end of the segment
else if (t > 1.0) return cv::norm(p-w); // Beyond the 'w' end of the segment
const cv::Point2f projection = v + t * (w - v); // Projection falls on the segment
return cv::norm(p - projection);
}
int main()
{
cv::Mat image = cv::imread("HoughLinesP_perfect.png");
cv::Mat gray;
cv::cvtColor(image,gray,CV_BGR2GRAY);
cv::Mat output; image.copyTo(output);
cv::Mat g_thres = gray == 0;
std::vector<cv::Vec4i> lines;
cv::HoughLinesP( g_thres, lines, 1, CV_PI/(4*180.0), 50, image.cols/20, 10 );
float minDist = 100;
std::vector<cv::Vec4i> lines_filtered;
for( size_t i = 0; i < lines.size(); i++ )
{
bool keep = true;
int overwrite = -1;
cv::Point2f a(lines[i][0], lines[i][6]);
cv::Point2f b(lines[i][7], lines[i][3]);
float lengthAB = cv::norm(a-b);
for( size_t j = 0; j < lines_filtered.size(); j++ )
{
cv::Point2f c(lines_filtered[j][0], lines_filtered[j][8]);
cv::Point2f d(lines_filtered[j][9], lines_filtered[j][3]);
float distCDA = minimum_distance(c,d,a);
float distCDB = minimum_distance(c,d,b);
float lengthCD = cv::norm(c-d);
if((distCDA < minDist) && (distCDB < minDist))
{
if(lengthCD >= lengthAB)
{
keep = false;
}
else
{
overwrite = j;
}
}
}
if(keep)
{
if(overwrite >= 0)
{
lines_filtered[overwrite] = lines[i];
}
else
{
lines_filtered.push_back(lines[i]);
}
}
}
for( size_t i = 0; i < lines_filtered.size(); i++ )
{
cv::line( output, cv::Point(lines_filtered[i][0], lines_filtered[i][10]),
cv::Point(lines_filtered[i][11], lines_filtered[i][3]), cv::Scalar(155,255,155), 2, 8 );
}
cv::imshow("g thres", g_thres);
cv::imwrite("HoughLinesP_out.png", output);
cv::resize(output, output, cv::Size(), 0.5,0.5);
cv::namedWindow("output"); cv::imshow("output", output);
cv::waitKey(-1);
std::cout << "finished" << std::endl;
return 0;
}
答案 2 :(得分:0)
你应该试试Hough Line Transform
。以下是this website
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
Mat src = imread("building.jpg", 0);
Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, CV_GRAY2BGR);
vector<Vec2f> lines;
// detect lines
HoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 );
// draw lines
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
}
imshow("source", src);
imshow("detected lines", cdst);
waitKey();
return 0;
}
有了这个,你应该能够调整并获得你正在寻找的礼物(顶点)。