我有一组documents
喜欢:
D1 = "The sky is blue."
D2 = "The sun is bright."
D3 = "The sun in the sky is bright."
和一组words
之类的:
"sky","land","sea","water","sun","moon"
我想创建一个这样的矩阵:
x D1 D2 D3
sky tf-idf 0 tf-idf
land 0 0 0
sea 0 0 0
water 0 0 0
sun 0 tf-idf tf-idf
moon 0 0 0
类似于此处给出的示例表:http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html。在给定的链接中,它使用文档中的相同单词,但我需要使用我提到的words
集。
如果文档中存在特定单词,那么我会放置tf-idf
值,否则我会在矩阵中放置0
。
知道如何构建某种类似的矩阵吗? Python将是最好的,但R也赞赏。
我使用以下代码但不确定我是否正在做正确的事情。我的代码是:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
train_set = "The sky is blue.", "The sun is bright.", "The sun in the sky is bright." #Documents
test_set = ["sky","land","sea","water","sun","moon"] #Query
stopWords = stopwords.words('english')
vectorizer = CountVectorizer(stop_words = stopWords)
#print vectorizer
transformer = TfidfTransformer()
#print transformer
trainVectorizerArray = vectorizer.fit_transform(train_set).toarray()
testVectorizerArray = vectorizer.transform(test_set).toarray()
#print 'Fit Vectorizer to train set', trainVectorizerArray
#print 'Transform Vectorizer to test set', testVectorizerArray
transformer.fit(trainVectorizerArray)
#print
#print transformer.transform(trainVectorizerArray).toarray()
transformer.fit(testVectorizerArray)
#print
tfidf = transformer.transform(testVectorizerArray)
print tfidf.todense()
我得到了非常荒谬的结果(值只有0
和1
,而我期望的值介于0和1之间。)
[[ 0. 0. 1. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 1.]
[ 0. 0. 0. 0.]
[ 1. 0. 0. 0.]]
我也对其他图书馆开放计算tf-idf
。我只想要一个我上面提到的正确矩阵。
答案 0 :(得分:2)
R解决方案可能如下所示:
library(tm)
docs <- c(D1 = "The sky is blue.",
D2 = "The sun is bright.",
D3 = "The sun in the sky is bright.")
dict <- c("sky","land","sea","water","sun","moon")
mat <- TermDocumentMatrix(Corpus(VectorSource(docs)),
control=list(weighting = weightTfIdf,
dictionary = dict))
as.matrix(mat)[dict, ]
# Docs
# Terms D1 D2 D3
# sky 0.5849625 0.0000000 0.2924813
# land 0.0000000 0.0000000 0.0000000
# sea 0.0000000 0.0000000 0.0000000
# water 0.0000000 0.0000000 0.0000000
# sun 0.0000000 0.5849625 0.2924813
# moon 0.0000000 0.0000000 0.0000000
答案 1 :(得分:1)
我相信你想要的是
vectorizer = TfidfVectorizer(stop_words=stopWords, vocabulary=test_set)
matrix = vectorizer.fit_transform(train_set)
(正如我之前所说,这不是一个测试集,这是一个词汇表。)