霍夫圆检测精度非常低

时间:2014-06-01 04:28:26

标签: java opencv image-processing computer-vision edge-detection

我正在尝试从图像中检测到圆形形状,该图像看起来具有非常好的清晰度。我确实意识到圈子的一部分缺失了但是从我所读到的关于霍夫变换的内容来看,它似乎并不会导致我遇到的问题。

输入: Output image

输出: enter image description here

代码:

// Read the image
Mat src = Highgui.imread("input.png");

// Convert it to gray
Mat src_gray = new Mat();
Imgproc.cvtColor(src, src_gray, Imgproc.COLOR_BGR2GRAY);

// Reduce the noise so we avoid false circle detection
//Imgproc.GaussianBlur( src_gray, src_gray, new Size(9, 9), 2, 2 );

Mat circles = new Mat();

/// Apply the Hough Transform to find the circles
Imgproc.HoughCircles(src_gray, circles, Imgproc.CV_HOUGH_GRADIENT, 1, 1, 160, 25, 0, 0);

// Draw the circles detected
for( int i = 0; i < circles.cols(); i++ ) {
    double[] vCircle = circles.get(0, i);

    Point center = new Point(vCircle[0], vCircle[1]);
    int radius = (int) Math.round(vCircle[2]);

    // circle center
    Core.circle(src, center, 3, new Scalar(0, 255, 0), -1, 8, 0);
    // circle outline
    Core.circle(src, center, radius, new Scalar(0, 0, 255), 3, 8, 0);
}

// Save the visualized detection.
String filename = "output.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, src);

我对高斯模糊进行了评论,因为(反直觉地说)它大大增加了同样不准确的圆圈的数量。

我的输入图像是否有任何问题会导致Hough无法正常工作?我的参数是否已关闭?

编辑:第一个答案提出了一个关于霍夫的最小/最大半径提示的好点。我拒绝添加这些参数,因为这篇文章中的示例图像只是成千上万个图像中的一个,所有图像都具有从~20到几乎无穷大的不同半径。

2 个答案:

答案 0 :(得分:3)

我已从此答案中调整了我的RANSAC算法:Detect semi-circle in opencv

点子:

  1. 从二进制边缘图像中随机选择3个点
  2. 从这3点创建一个圆圈
  3. 测试&#34;好&#34;这个圈子是
  4. 如果它比此图片中之前找到的最佳圆圈更好,请记住

  5. 循环1-4直到达到一定数量的迭代。然后接受找到的最佳圈子。

  6. 从图片

  7. 中删除该接受的圈子
  8. 重复1-6,直到找到所有圈子

  9. 问题:

    1. 目前您必须知道想要在图片中找到多少个圈子
    2. 仅测试了那张图片。
    3. c ++ code
    4. 结果:

      enter image description here

      代码:

          inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
          {
            float x1 = p1.x;
            float x2 = p2.x;
            float x3 = p3.x;
      
            float y1 = p1.y;
            float y2 = p2.y;
            float y3 = p3.y;
      
            // PLEASE CHECK FOR TYPOS IN THE FORMULA :)
            center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
            center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
      
            center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
            center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
      
            radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
          }
      
      
      
          std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
          {
           std::vector<cv::Point2f> pointPositions;
      
           for(unsigned int y=0; y<binaryImage.rows; ++y)
           {
               //unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
               for(unsigned int x=0; x<binaryImage.cols; ++x)
               {
                   //if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
                   if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
               }
           }
      
           return pointPositions;
          }
      
      
          float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
          {
           unsigned int counter = 0;
           unsigned int inlier = 0;
           float minInlierDist = 2.0f;
           float maxInlierDistMax = 100.0f;
           float maxInlierDist = radius/25.0f;
           if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
           if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
      
           // choose samples along the circle and count inlier percentage
           for(float t =0; t<2*3.14159265359f; t+= 0.05f)
           {
               counter++;
               float cX = radius*cos(t) + center.x;
               float cY = radius*sin(t) + center.y;
      
               if(cX < dt.cols)
               if(cX >= 0)
               if(cY < dt.rows)
               if(cY >= 0)
               if(dt.at<float>(cY,cX) < maxInlierDist)
               {
                  inlier++;
                  inlierSet.push_back(cv::Point2f(cX,cY));
               }
           }
      
           return (float)inlier/float(counter);
          }
      
          float evaluateCircle(cv::Mat dt, cv::Point2f center, float radius)
          {
      
              float completeDistance = 0.0f;
              int counter = 0;
      
              float maxDist = 1.0f;   //TODO: this might depend on the size of the circle!
      
              float minStep = 0.001f;
              // choose samples along the circle and count inlier percentage
      
              //HERE IS THE TRICK that no minimum/maximum circle is used, the number of generated points along the circle depends on the radius.
              // if this is too slow for you (e.g. too many points created for each circle), increase the step parameter, but only by factor so that it still depends on the radius
      
              // the parameter step depends on the circle size, otherwise small circles will create more inlier on the circle
              float step = 2*3.14159265359f / (6.0f * radius);
              if(step < minStep) step = minStep; // TODO: find a good value here.
      
              //for(float t =0; t<2*3.14159265359f; t+= 0.05f) // this one which doesnt depend on the radius, is much worse!
              for(float t =0; t<2*3.14159265359f; t+= step)
              {
                  float cX = radius*cos(t) + center.x;
                  float cY = radius*sin(t) + center.y;
      
                  if(cX < dt.cols)
                      if(cX >= 0)
                          if(cY < dt.rows)
                              if(cY >= 0)
                                  if(dt.at<float>(cY,cX) <= maxDist)
                                  {
                                      completeDistance += dt.at<float>(cY,cX);
                                      counter++;
                                  }
      
              }
      
              return counter;
          }
      
      
          int main()
          {
          //RANSAC
      
          cv::Mat color = cv::imread("HoughCirclesAccuracy.png");
      
          // convert to grayscale
          cv::Mat gray;
          cv::cvtColor(color, gray, CV_RGB2GRAY);
      
          // get binary image
          cv::Mat mask = gray > 0;
      
          unsigned int numberOfCirclesToDetect = 2;   // TODO: if unknown, you'll have to find some nice criteria to stop finding more (semi-) circles
      
          for(unsigned int j=0; j<numberOfCirclesToDetect; ++j)
          {
              std::vector<cv::Point2f> edgePositions;
              edgePositions = getPointPositions(mask);
      
              std::cout << "number of edge positions: " << edgePositions.size() << std::endl;
      
              // create distance transform to efficiently evaluate distance to nearest edge
              cv::Mat dt;
              cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
      
      
      
              unsigned int nIterations = 0;
      
              cv::Point2f bestCircleCenter;
              float bestCircleRadius;
              //float bestCVal = FLT_MAX;
              float bestCVal = -1;
      
              //float minCircleRadius = 20.0f; // TODO: if you have some knowledge about your image you might be able to adjust the minimum circle radius parameter.
              float minCircleRadius = 0.0f;
      
              //TODO: implement some more intelligent ransac without fixed number of iterations
              for(unsigned int i=0; i<2000; ++i)
              {
                  //RANSAC: randomly choose 3 point and create a circle:
                  //TODO: choose randomly but more intelligent,
                  //so that it is more likely to choose three points of a circle.
                  //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
                  unsigned int idx1 = rand()%edgePositions.size();
                  unsigned int idx2 = rand()%edgePositions.size();
                  unsigned int idx3 = rand()%edgePositions.size();
      
                  // we need 3 different samples:
                  if(idx1 == idx2) continue;
                  if(idx1 == idx3) continue;
                  if(idx3 == idx2) continue;
      
                  // create circle from 3 points:
                  cv::Point2f center; float radius;
                  getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
      
                  if(radius < minCircleRadius)continue;
      
      
                  //verify or falsify the circle by inlier counting:
                  //float cPerc = verifyCircle(dt,center,radius, inlierSet);
                  float cVal = evaluateCircle(dt,center,radius);
      
                  if(cVal > bestCVal)
                  {
                      bestCVal = cVal;
                      bestCircleRadius = radius;
                      bestCircleCenter = center;
                  }
      
                  ++nIterations;
              }
              std::cout << "current best circle: " << bestCircleCenter << " with radius: " << bestCircleRadius << " and nInlier " << bestCVal << std::endl;
              cv::circle(color,bestCircleCenter,bestCircleRadius,cv::Scalar(0,0,255));
      
              //TODO: hold and save the detected circle.
      
              //TODO: instead of overwriting the mask with a drawn circle it might be better to hold and ignore detected circles and dont count new circles which are too close to the old one.
              // in this current version the chosen radius to overwrite the mask is fixed and might remove parts of other circles too!
      
              // update mask: remove the detected circle!
              cv::circle(mask,bestCircleCenter, bestCircleRadius, 0, 10); // here the radius is fixed which isnt so nice.
          }
      
          cv::namedWindow("edges"); cv::imshow("edges", mask);
          cv::namedWindow("color"); cv::imshow("color", color);
      
          cv::imwrite("detectedCircles.png", color);
          cv::waitKey(-1);
          return 0;
          }
      

答案 1 :(得分:1)

如果您正确设置minRadiusmaxRadius参数,则会给您带来良好的效果。

对于您的图片,我尝试了以下参数。

method - CV_HOUGH_GRADIENT
minDist - 100
dp - 1
param1 - 80
param2 - 10
minRadius - 250
maxRadius - 300

我得到了以下输出

enter image description here

  • 注意:我在C ++中试过这个。